وراثت پذیری و تنوع ژنتیکی صفات زراعی، عملکرد و کیفیت میوه در 650 لاین نسل F6 گوجه فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زراعی و اصلاح نباتات، دانشکدگان ابوریحان، دانشگاه تهران، پاکدشت، ایران.

2 گروه علوم باغبانی، دانشکدگان ابوریحان، دانشگاه تهران، پاکدشت، ایران

3 گروه علوم زراعی و اصلاح نباتات - دانشکدگان ابوریحان- دانشگاه تهران، پاکدشت، ایران.

چکیده

این مطالعه به‌منظور ارزیابی عملکرد و اجزای آن، همچنین صفات کیفی میوه روی 650 لاین نسل ششم حاصل از خودگشنی ارقام تجاری به همراه چهار رقم شاهد (هیبرید تجاری) طی سال زراعی 1401 به صورت آگمنت بر پایه طرح بلوک‌های کامل تصادفی انجام شد. ضرایب تغییرات فنوتیپی و مقادیر بیشینه و کمینه صفات نشان داد که تنوع بالایی در صفات آفتاب‌سوختگی، کاسبرگ باقیمانده بر روی میوه، ماندگاری، اسیدیته کل، تعداد میوه در هر بوته، عملکرد تک بوته و تعداد حفره میوه در بین لاین‌های این مطالعه وجود دارد، بنابراین امکان گزینش با کارایی بالا در بین این مواد ژنتیکی برای به نژادگران فراهم می‌باشد. در بین لاین‌های مورد مطالعه، لاین‌های شماره 242، 495، 17 و 85 با عملکرد بالای 6 کیلوگرم در بوته نسبت به لاین‌های دیگر و ارقام شاهد برتری داشتند. صفات آفتاب سوختگی، درصد کاسبرگ باقیمانده بر روی میوه و تعداد حفره کمترین اثر پذیری را از محیط داشتند و بیشترین واریانس ژنتیکی را دارا بودند. همچنین، تجزیه به مولفه‌های اصلی براساس صفات مورفولوژیک نشان داد که شش مولفه اصلی اول، در مجموع 32/69 درصد از تنوع فنوتیپی کل در بین داده‌ها را توجیه کردند. تجزیه و تحلیل رگرسیون گام به گام نشان داد که تعداد میوه در بوته و وزن تک میوه، 96 درصد از تغییرات عملکرد تک بوته را توجیه می‌کنند. در مجموع در بین صفات مورفولوژیکی، صفات تعداد میوه در بوته، وزن تک میوه، تعداد گل‌آذین در هر بوته و تعداد میوه در هر گل‌آذین شاخص‌های مهم‌تری برای گزینش لاین‌های گوجه‌فرنگی با عملکرد بالا هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Heritability and genetic diversity of agronomic traits, yield and fruit quality of 650 F6 generation lines in tomato

نویسندگان [English]

  • Mahnaz Hatamifard 1
  • Mahmoud Lotfi 2
  • Hossein Ramshini 3
1 Department of Agronomy and Plant breeding, Agricultural College of Abouraihan, University of Tehran, Pakdasht, Iran.
2 Department of Horticulture Sciences, Agricultural College of Abouraihan, University of Tehran, Pakdasht, Iran
3 Department of Agronomy and Plant breeding Sciences, Agricultural College of Abouraihan, University of Tehran, Pakdasht, Iran
چکیده [English]

This study aimed to evaluate the yield and its components as well as fruit quality traits of 650 tomato inbred lines resulting from self-fertilization of commercial cultivars. The lines were evaluated along with four commercial hybrid control cultivars in 2022 as augmented in a randomized complete block design. The coefficients of phenotypic variation and the maximum and minimum values of the studied traits showed that there was a high variation for the traits of Sunscald (%), persistent calyx in fruits (%), shelf life, titratable acidity (TA), the number of fruits per plant, single-plant yield and the number of fruit locules among the lines, so it is possible to select the best lines with high efficiency for breeding purposes. Among the lines, “242”, “495”, “17” and “85” were superior to other lines and control cultivars with a yield of over 6 kg per plant. Sunscald (%), persistent calyx in fruits (%) and the number of locules were least influenced by the environment and had the highest genetic variance. Also, principal component analysis based on morphological traits showed that the first six main components explained 69.32% of the total phenotypic variation. Stepwise regression analysis showed that number of fruit per plant and single fruit weight explained 96% of the single-plant yield variation. Overall, among the morphological characteristics, the traits of the number of fruits per plant, single fruit weight, number of inflorescences per plant, and number of fruits per inflorescence are more important indicators for selecting high-yielding tomato lines.

کلیدواژه‌ها [English]

  • Descriptive statistics
  • Cluster analysis
  • Principal component analysis
  • Heritability

Extended Abstract

Introduction

Tomato (Solanum lycopersicum L.) is one of the most widely grown vegetables in the world, with special importance due to its large consumption and high health and nutritional values, both for fresh and processing markets. Approximately 182.2 million tons of tomato is produced worldwide on more than 5.7 million hectares. Currently, this vegetable accounts for 25% of total vegetable production in the world. Traditional breeding methods have yielded varieties with notable performance traits. Given the increasing population demands in the world, especially Asia, high productivity remains the primary goal of tomato improvement programs. Fundamental fruit performance traits include fruit weight, fruit number per plant and fruit set efficiency (the ratio of flowers which are setting fruits). Moreover, fruit quality significantly affects consumer preference and determines the final product price. This study focuses on exploring the relationship among yield, its components and fruit quality traits in tomato lines, given the need for genetic diversity enhancement and utilization in tomato breeding programs.

 

Materials and methods

In this study 650 tomato lines of tomato were compared in terms of yield, fruit quality and morphological traits. In addition, the heritability of various traits was assessed. The experiment was conducted at College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran, in spring and summer of 2022. Plant materials included 650 lines from the sixth generation resulting from self-pollination of commercial hybrid varieties, along with four control cultivar; Bedero, Brivio, 8320, and Matin. Morphological measurements aimed to assess diversity for various agricultural traits, including fruit and plant appearance. Seeds were germinated in trays in a greenhouse with controlled conditions and then transplanted to the field. Evaluation was performed in augmented with randomized complete block design. Among 650 tomato lines, 164 were selected based on resistance to viruses, fungi, and pests, plant uniformity, fruit shape, firmness, taste, and other fruit quality traits. Various traits related to plant architecture, fruit yield and quality were measured throughout the growing season, including number of inflorescences per plant, number of flowers per inflorescence, number of fruits per inflorescence, Sunscald (%), persistent calyx in fruits (%), fruit length, fruit width, pricarp thickness, number of locules, pH, titratable acidity, Brix degree, shelf life, fruit number per plant, single plant yield, single fruit weight and days to harvest. Statistical analyses included variance analysis and calculation of descriptive statistics and heritability for all traits. Principal component analysis, cluster analysis, and biplot were carried out for data reduction and visualization.

 

Results and Discussion

The results of variance analysis showed that there were significant difference among control cultivars for all traits except shelf life, days to harvest, TA, Brix, and pH. The range of single-plant yield variation was very high among 164 lines, ranging from 1.21 to 6.43 kilograms per plant. Estimation of variance components indicated that among the studied traits, single-plant yield and days to harvest were more influenced by the environment, as they showed low genetic variance values. Conversely, sunscald (%), persistent calyx in fruits (%), and number of locules were less influenced by the environment as showed the highest genetic variance. The highest coefficients of genotypic and phenotypic diversity were attributed to sunscald (%), persistent calyx in fruits (%), TA, and number of locules, respectively. The existing correlation coefficients between traits showed that the number of fruit per plant (0.730), pricarp thickness (0.409), number of inflorescences per plant (0.382), single fruit weight (0.248), and number of locules (0.223) had significant positive correlations at the 1% level with single-plant yield. Stepwise regression analysis showed that number of fruit per plant and single fruit weight explained 96% of the single-plant yield variation. Based on cluster analysis, the studied tomato lines were divided into three groups. The first group was the largest cluster, comprising 64 lines (41.5%). This cluster, with above-average value for single-plant yield, consisted of highly productive lines. Principal component analysis results showed that only the first two components in PCA had eigen values higher than 1, indicating a cumulative variance of 67.36%.

Based on the results of the present study, single-plant yield, number of inflorescences per plant, number of flowers per inflorescence, number of fruits per inflorescence, number of fruits per plant, and single fruit weight are important for improving the morphological and qualitative traits of tomato fruit. Therefore, these traits can be utilized for parent selection in hybridization programs aimed at broadening the genetic base in the population and also for the development of F1 hybrids.

 

Conclusion

In this study, 164 tomato lines were examined based on morphological traits. The results of variance analysis indicated the high genetic diversity among the evaluated lines, and these results can be beneficial for improving the measured agronomic traits. On the other hand, the measured traits in this study also showed good potential for investigating genetic diversity within the studied population.

دفتریان، فرانک و گل آبادی، مریم. (139۷). ارزیابی عملکرد و کیفیت میوه در برخی از ژنوتیپ های گوجه فرنگی گلخانه ای. مجله تولید و فرآوری گیاهی، 8 (1)، 113-126.
گل­چشمه، ساسان؛ کیانی، غفار؛ کاظمی تبار، سید کمال و نواب پور، سعید. (1401). بررسی تنوع مورفولوژیکی و ارزیابی عملکرد لاین‌های گوجه فرنگی با استفاده از تجزیه آماری چند متغیره. مجله علوم باغبانی، 36 (2)، 415-427.
محسنی­ فرد؛ احسان، فارسی، محمد؛ نعمتی، سید حسین و ملک­زاده، خلیل. (۱۳۹۰). ارزیابی تنوع ژنتیکی 16 لاین گوجه‌فرنگی (Lycopersicon esculentum) با استفاده از نشانگر مولکولی SSR و بررسی همبستگی آن با هتروزیس. مجله علوم باغبانی ایران، ۴۲ (4)، ۱۸۵-۱۹۲.
نظامی، سمیه؛ نعمتی، سید حسین؛ آرویی، حسین و کافی، محمد. (1399). تجزیه و تحلیل نیمه دی آلل صفات مرتبط با عملکرد و کیفیت میوه در لاین های گوجه فرنگی. مجله علوم باغبانی ایران، 52 (4)، 1011-1025.
 
REFERENCE
Agong, S.G., Schittenhelm, S., & Friedt, W. (2001). Genotypic variation of Kenyan tomato (Lycopersicon
esculentum L.) germplasm. The Journal of Food Technology in Africa, 6(1), 13-17.
https://doi.org/10.4314/jfta.v6i1.19277.
Cappetta, E., Andolfo, G., Di Matteo, A., Barone, A., Frusciante, L., & Ercolano, M. R. (2020). Accelerating tomato breeding by exploiting genomic selection approaches. Plants, 9(1), 12–36. https://doi.org/10.3390/plants9010012
Daftarian, F., & Golabadi, M. (2017). Evaluation of fruit yield and quality in some greenhouse tomato genotypes. Journal of Crop Production and Processing, 8(1), 113-126. https://civilica.com/doc/1220046. (In Persian).
de Souza, L. M., Melo, P. C. T., Luders, R. R., & Melo, A. M. T. (2012). Correlations between yield and fruit quality characteristics of fresh market tomatoes. Horticultura Brasileira, 30(4), 627–631. https://doi.org/10.1590/S0102-05362012000400011
Food and Agriculture Organization of the United Nations. (2022). FAOSTAT. Retrieved  July 30, 2024,from https://www.fao.org/faostat/en/#home
Feyissa, G.F., & Bessie, S. (2019). Major types of risk sources perceived by tomato producing small holder farmers the case of Dugda district, east Shewa zone, Oromia. Ethiopia. Journal of Economics and Sustainable Development, 10(13), 9-17. https://doi.org/10.7176/JESD.
Ghorbanpour, A., Salimi, A., Tajick Ghanbary, M.A., Pirdashti, H., & Dehestani, A. (2017). Relationship between fruit yield and its components in tomato (Lycopersicon esculentum Mill.) cultivars using multivariate statistical methods. Journal of Crop Breeding, 24(9), 22-29. doi: 10.29252/jcb.9.24.22.
GolCheshmeh, S., Kiani, G., Kazemi Tabar, S.K., & Navabpour, S. (2022). Investigation of morphological diversity and evaluation of tomato lines yield using multivariate statistical analysis. Journal of Horticultural Science, 36(2), 415-427. doi: 10.22067/JHS.2021.70173.1048. (In Persian).
Hamidi, H., Ahmadi, M. & Soltani Idaliki J. (2023). Investigating the genetic diversity of sugar beet half-sib families under natural infection conditions to cyst nematode and rhizomania diseases. Journal of Plant Production Research, 30(3), 177-195. doi: 10.22069/JOPP.2023.21005.3004
Henareh, M., Dursun, A., & Mandoulakani, B. A. (2015). Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Scientiarum Polonorum. Hortorum Cultus14(2), 87–96. https://czasopisma.up.lublin.pl/index.php/asphc/
Islam, B., Ivy, N., Rasul, M., & Zakaria, M. (2010). Character association and path analysis of exotic tomato (Solanum lycopersicum L.) genotypes. Bangladesh Journal of Plant Breeding and Genetics23(1), 13–18. https://doi.org/10.3329/BJPBG.V23I1.9313
International Union for the Protection of New Varieties of Plants. (2001). Tomato (Lycopersicon lycopersicum L.). UPOV Code: TG/44/10. Geneva, Switzerland. Retrieved July 30, 2024, from https://www.upov.int/portal/index.html.en
Knapp, S. (2002). Tobacco to tomatoes: A phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany53(377), 2001–2022. https://doi.org/10.1093/jxb/53.377.2001
Kumar, N., Bhardwaj, M.L., Sharma, A., & Kumar, N. (2017). Assessment of genetic divergence in tomato (Solanum lycopersicum L.) through clustering and principal component analysis under Mid Hills conditions of Himachal Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 6(5), 1811 1819. https://doi.org/10.20546/ijcmas.2017.605.197.
Kumari, S., & Gowda, P. H. (2016). Estimation of heterosis and combining ability in tomato for fruit shelf life and yield component traits using line x tester method. International Journal of Agronomy and Agricultural Research9(3), 10–19. https://doi.org/10.5555/20173103564
Mohsenifard, E., Farsi, M., Nemati, H., & Malekzade, K. (2011). An SSR-based assessment of genetic diversity in 16 tomato (Lycopersicon esculentum) lines and its correlation with heterosis. Iranian Journal of Horticultural Science, 42(2), 185-192. (In Persian)
Mukul, S., Sandhya, Kumar, M., & Agarwal, R. K. (2022). Principal component analysis based on yield and its attributing traits in tomato (Solanum lycopersicum L.) genotypes. The Pharma Innovation Journal11(1), 1836–1841. Retrieved from http://www.thepharmajournal.com
Mustafa, M., Syukur, M., Sutjahjo, S. H., & Sobir. (2016). Estimation of genetic parameters, correlation, and genetic relationship of tomatoes genotype in lowland. Agrotech Journal ATJ1(1), 19–25, ISSN: 2548-5121. Retrieved from http://usnsj.com/index.php/ATJ/article/view/ATJ004
Nezami, S., Nemati, H., Arouiee H., & Kafi, M. (2020). Half diallel analysis of related traits to yield and fruit quality in tomato lines. Iranian Journal of Horticultural Science, 52(4), 1011-1025. DOI: 10.22059/ijhs.2020.296125.1759. (In Persian)
Nankar, A. N., Tringovska, I., Grozeva, S., Ganeva, D., & Kostova, D. (2020). Tomato phenotypic diversity determined by combined approaches of conventional and high-throughput tomato analyzer phenotyping. Plants, 9(2), 197. https://doi.org/10.3390/plants9020197
Osei, M.K., Bonsu, K.O., Agyeman, A., & Choi, H.S. (2014). Genetic diversity of tomato germplasm in Ghana using morphological characters. International Journal of Plant & Soil Science, 3(3), 220-231. https://doi.org/10.9734/IJPSS/2014/6466.
Ovalles, F.A., & Collins, M.E. (1988). Variability of northwest Florida soils by principal component analysis. Soil Science Society of America Journal, 52(5), 1430-1435. https://doi.org/10.2136/sssaj1988.03615995005200050042x.
Pradhan, A. M., Nanadeshwar, B. C., Sarkar, K. K., & Konar, A. (2011). Estimation of genetic parameters and association of traits related to yield in potato (Solanum tuberosum L.). Journal of Crop and Weed7(2), 229–231. Retrieved from https://www.researchgate.net/publication/361844304
Prakash, M. O., & Vijay, B. (2017). Principal component and cluster analysis of indigenous tomato genotypes based on morphological indicators. Research Journal of Biotechnology12(7), 50–58. Retrieved from https://www.researchgate.net/publication/328717389
Research and Markets. (2022). Tomato seeds global market report. Retrieved  July 30, 2024,from https://www.researchandmarkets.com/
Samadia, D. K., Aswani, R. C., & Dhandar, G. (2006). Genetic analysis for yield components in tomato land races. Haryana Journal of Horticultural Science35(1–2), 116–119. Retrieved from https://books.google.com/books/about/Haryana_Journal_of_Horticultural_Science.html?id=-TxMAAAAYAAJ
Srivastava, K., Kumari, K., Singh, S., & Kumar, R. (2013). Association studies for yield and its component traits in tomato (Solanum lycopersicum L.). Plant Archives13(1), 105–112. Retrieved from https://www.researchgate.net/publication/257410511
Shukla, S., Bhargava, A., Chatterjee, A., Pandey, A. C., & Mishra, B. K. (2010). Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor L.), a nutritionally under-utilized crop. Journal of the Science of Food and Agriculture90(1), 139–144. https://doi.org/10.1002/jsfa.3797
Terzopoulos, P.J., & Bebeli, P.J. (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 116(4), 354-361. https://doi.org/10.1016/j.scienta.2008.02.010.
Tembe, K.O., Chemining'wa, G., Ambuko, J., & Owino, W. (2018). Evaluation of African tomato landraces (Solanum lycopersicum) based on morphological and horticultural traits. Agriculture and Natural Resources, 52(6), 536-542. https://doi.org/10.1016/j.anres.2018.11.014.
Tsagaye, D., Gedebo, A., & Aklilu, Sh. (2019). Multivariate studies for fruits yield and quality components in diverse tomato (Lycopersicon esculentum Mill.) genotypes. International Journal of Research in Agricultural Sciences6(6), 2348–3997. https://www.researchgate.net/publication/349162344
Yap, T. C., & Harvey, B. L. (2013). Inheritance of yield components and morpho-physiological traits in barley, Hordeum vulgare L. Crop Science, 12(3), 283–286. https://doi.org/10.2135/cropsci1972.0011183X001200030008x