تأثیر طیف نور ال‌ای‌دی و روش تربیت بوته بر صفات مورفولوژیکی و بیوشیمیایی گوجه‌فرنگی پیوندی گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، خوزستان، ایران

2 گروه مهندسی علوم باغبانی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

3 گروه علوم و مهندسی باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

چکیده

پیوند سبزی­ها یک استراتژی مدیریتی نوین است که به‌طور گسترده با هدف جلوگیری از تنش­های زیستی و غیر زیستی در سبزی­های میوه‌ای در گلخانه‌ها به کار گرفته می­شود. برای این منظور گوجه‌فرنگی گلخانه­ای رقم SV4129TH به‌عنوان پیوندک، روی گوجه‌فرنگی رقم امپرادور (به‌عنوان پایه) پیوند شد. نشا­های پیوند شده دو و سه ساقه­ای همراه با نشاهای غیر پیوندی به‌عنوان شاهد (تک ساقه بدون تربیت بوته) به مدت 30 روز در محیط کاملاً کنترل‌شده تحت چهار تیمار نور ال ای دی (LED) شامل نورهای قرمز، آبی، سفید (طیف کامل) و ترکیب نورهای قرمز و آبی (70 به 30 درصد) در طبقات مجزا قرار داده شدند. نشا­های رشد یافته زیر نور ال ای دی ، بعد از 30 روز به گلخانه با شرایط طبیعی انتقال یافتند.  نتایج نشان داد که ارتفاع گیاه و قطر ساقه در گیاهان چند ساقه‌ای پیوندی نسبت به گیاهان تک ساقه‌ای غیر پیوندی به‌طور معنی­داری افزایش یافتند (به ترتیب 28/10، 16/13 و 65 درصد). همچنین، بار­دهی (میانگین تک میوه و عملکرد در بوته) در گیاهان پیوندی نسبت به گیاهان تک ساقه غیر پیوندی افزایش نشان دادند (به ترتیب 1/4 – 3/2 و 27 – 16/17 درصد). ویژگی­های بیوشیمیایی مانند لیکوپن، کل مواد جامد محلول و اسید آسکوربیک در میوه گیاهان پیوندی افزایش نشان دادند ( به ترتیب 30، 1/9 و 58/9 درصد بیشتر از گیاهان غیر پیوندی). میزان اسیدیته میوه در گیاهان غیر پیوندی برابر با 67/0 درصد بود که در مقایسه با گیاهان پیوندی بیشتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of LED Light and Stem Training Methods on Morphological and Biochemical Characteristic of Greenhouse Grafted Tomato

نویسندگان [English]

  • Hamideh Nikkhah Amirabad 1
  • Seyyed Abdullah Eftekhari 1
  • Reza Salehi 2
  • Mokhtar Heidari 3
1 Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahvaz, Khuzestan, Iran.
2 Department of Horticultural Science, College of Agriculture, University of Tehran, Karaj, Iran
3 4. Department of Horticultural Science, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
چکیده [English]

Vegetable grafting is an emerging management technique extensively employed to mitigate biotic and abiotic stresses in greenhouse-grown fruits and vegetables. In this study, the ‘SV4129TH’ tomato cultivar was grafted onto the ‘Emperdor’ rootstock. Grafted seedlings with two and three stems, as well as non-grafted control seedlings, were grown for 30 days in a controlled environment under four different LED light treatments: pure red, pure blue, white (full spectrum), and a combination of red and blue (30% and 70%, respectively). The findings indicate that the combination of red and blue light (RB) is the most effective light source for enhancing the quality of grafted tomato seedlings. After 30 days under these light conditions, evaluations revealed significant increases in morphological traits for grafted multi-stemmed plants compared to non-grafted single-stemmed plants, with height, stem diameter, and number of leaves increasing by 10.28%, 13.16%, and 65%, respectively. The yield and average fruit size in two-stem and three-stem grafted plants were 3.2-4.1% and 16.17-27% higher than those in non-grafted single-stemmed plants. Biochemical attributes such as lycopene, soluble solids, and vitamin C were 30%, 9.1%, and 9.58% higher in grafted plants, respectively, compared to non-grafted plants. Non-grafted plants had an acidity level of 0.67%, which was higher than that of grafted plants. Overall, the most productive and efficient option was the three stemmed grafted tomatoes, which produced 11.9 kg per plant.

کلیدواژه‌ها [English]

  • Blue light
  • Pruning
  • Red light
  • Stock
  • Tomato
  • Vegetable Grafting

Extended Abstract

Introduction

     Tomato (Solanum lycopersicum L.) is a crucial horticultural crop worldwide. To boost yields, farmers use methods such as hybrid varieties, controlled environments, and soilless culture. Extending the production period in greenhouses can increase yield but also subjects plants to biotic and abiotic stresses. The repeated use of chemicals to manage these stresses poses environmental risks, leading to a shift towards sustainable methods like grafting. Grafting combines the characteristics of two plants, with a strong rootstock supporting the shoot of a valuable but stress-sensitive plant. This technique enhances stress tolerance, water and nutrient efficiency, yield, and fruit quality. Grafting improves resistance to salinity, water stress, soil-borne diseases and environmental stresses. Successful grafting depends on the effective healing of the wound at the graft junction. Another important practice is stem training, which optimizes plant management to increase yield and quality. Various training methods affect plant physiology and performance, with double-stemmed grafted plants showing better results. Light, crucial for photosynthesis, affects grafting success and plant growth. Studies show that a combination of red and blue light leads to better grafting results and overall growth. More research is needed on training methods and light effects on grafted tomatoes to fully realize their potential in soilless cultivation systems.

 

Materials and Methods

From autumn 2022 through spring 2023, a study was conducted at the research greenhouse, Department of Horticultural Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran. The research focused on tomato plants, specifically utilizing the SV4129TH variety as the scion and the Emperador variety as the rootstock. Employing a factorial design within completely randomized blocks, the experiment investigated the effects of different light spectra (red, blue, white, and a combination of red and blue light) on seedlings, alongside various plant training methods. Seeds were initially sown in trays filled with cocopeat and perlite (3:1 ratio). After three weeks, once the stem diameter reached 2 mm, the seedlings underwent splice grafting and were subsequently transferred to a controlled grafting chamber with a humidity level of 95% and a temperature maintained between 28-30°C. Over time, the humidity in the chamber was gradually reduced, while light intensity was incrementally increased to facilitate the acclimatization of the grafted seedlings. Once the seedlings developed three true leaves, they were trained either as two-stemmed or three-stemmed plants and then moved into growth cubes. During a one-month period, the seedlings were exposed to different light spectra using 18-watt LED wall washers, providing an intensity of 75 ± 5 µmol/m2/Sec. Upon the appearance of the first flower cluster, the plants were transplanted into cocopeat grow bags. The greenhouse maintained a diurnal temperature range of 23-24°C and a nocturnal range of 17-18°C, alongside a relative humidity of 65-70% and natural lighting. The plants were irrigated using a drip system with a modified Hoagland nutrient solution. Throughout the four-month growth period in the greenhouse, data on plant performance were collected during the final three months. Harvesting occurred at the ripened (red) stage of the fruits, which were promptly transported to the laboratory for comprehensive measurements. Parameters assessed included fruit dimensions (length, diameter), weight, yield, average weight, firmness, total soluble solids (TSS), ascorbic acid content, total titratable acidity, and lycopene levels. Additionally, measurements were taken for plant height, root volume, and the fresh and dry weights of stems, leaves, and roots.

 

Results and Discussion

    It was found that stem training had a significant influence on yield, fruit weight, fruit dry matter, and fruit firmness. Fruit shape index was unaffected by the stem training methods. Conversely, light treatments and their interaction with stem training methods did not show significant effects on these measured indices. Concerning yield, grafted tomato plants trained with three stems produced higher yields (9.11 kg) compared to plants trained with two stems (8.18 kg) and non-grafted single-stem plants (3.2 kg). This represents yield increases of 27% and 17%, respectively, over non-grafted single-stem plants. Regarding fruit characteristics, the stem training method influenced average fruit weight, with plants grafted with two stems exhibiting higher weights (185.83 g) than those with three stems (162.97 g) and non-grafted single-stem plants (131.51 g). Similarly, grafted plants having two stems showed higher fruit dry matter percentages (16.13%) compared to plants with three stems (11.78%) and non-grafted plants (11.36%). The study also emphasized significant variations in vegetative growth indices such as stem weight, leaf weight, root weight, root volume, plant height, and stem diameter across different stem training methods. These findings underscore the crucial role of stem training methods in influencing both the quality of fruit and the vegetative growth of tomato plants, particularly under varying light conditions.

The research investigated how different light spectra affected grafted tomato plants with either two or three stems. Despite exposing the plants to red, blue, white light, and combinations thereof, there was no significant impact observed on root growth, above-ground parts, or fruit quality metrics. This could be attributed to the completion of graft healing processes before the light treatments were administered. Earlier studies have emphasized the role of light in graft uptake and plant physiological processes. The study proposes that future research should delve into light spectra and other environmental factors such as temperature to gain deeper insights into their effects on grafted tomato plants. Overall, the study reaffirmed that grafted plants, particularly those trained with two or three stems, exhibit enhanced fruit quality and yield compared to non-grafted plants with single stems, consistent with prior research highlighting the advantages of grafting in tomato cultivation.

 

Conclusion

The study found that light treatments (red, blue, white, red-blue mix) post-grafting didn't affect tomato plant growth or fruit quality significantly. Future research should explore light effects during graft establishment or adjust light intensity/wavelengths from grafting to pre-flowering. Moreover, grafting methods (two or three stems) significantly influenced tomato growth and fruit biochemistry compared to non-grafted single-stem plants. Further investigations using diverse rootstock/scion combos and training methods (single-stem, two-stem, three-stem) are needed to better understand their interactions and impact on tomato physiology and fruit quality.

سلطانی، سیدرضا؛ آروئی، حسین؛ صالحی، رضا و نعمتی، سید حسین. (1401). تأثیر طیف‌های مختلف نور LED بر ویژگی‌های مورفولوژیکی و محتوای عناصر معدنی در نشاهای پیوندی و غیر پیوندی گوجه‌فرنگی. نشریه علوم باغبانی ایران، 54(53)، 977-988.  https://doi.org/10.22059/ijhs.2022.340135.2010
رحمتیان، امیر؛ دلشاد. مجتبی؛ صالحی محمدی، رضا و موسوی رحیمی، مسعود. (1391). بررسی رشد و عملکرد گوجه‌فرنگی گلخانه ایی رقم سیندا تحت تأثیر پیوند، روش تربیت و تنگ میوه در کشت هیدروپونیک. نشریه علوم باغبانی ایران، 43(4)، 423-435. https://doi.org/10.22059/ijhs.2012.29377
 
REFERENCES
Afrashte, S., Rusta, H., & Zamani Bahramabadi, A. (2021). The effect of type and concentration of nutrient solution on the physiological and morphological characteristics of strawberries in hydroponic cultivation. Journal of Soil and Plant Interactions, 12 (2), 63-75. http://dx.doi.org/10.47176/jspi.12.1.20072
Al-Harbi, A., Hejazi, A., & Al-Omran, A. (2017). Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, 24 (6), 1274–1280. https://doi.org/10.1016/j.sjbs.2016.01.005
Ara, N., Bashar, M. K., Begum, S., & Kakon, S. S. (2007). Effect of spacing and stem pruning on the growth and yield of tomato. International Journal of Sustainable Crop Production 2, 35-39.
Buajaila, F. A., Devi, P., & Miles, C. A. (2018). Effect of environment on survival of eggplant, pepper, and tomato in a small-scale healing chamber. HortTechnology, 28 (5), 668–675. http://dx.doi.org/10.21273/HORTTECH04103-18
Carmach, C., Castro, M., Peñaloza, P., Guzmán, L., Marchant, M. J., Valdebenito, S., & Kopaitic, I. (2023). Positive effect of green photo-selective filter on graft union formation in tomatoes. Plants, 12, 3402. https://doi.org/10.3390/ plants12193402 
Djidonou, D., Zhao, X., Simonne, E. H., Koch, K. E.  & Erickso, J. E. (2013). Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience, 48 (4), 485-492. http://dx.doi.org/10.21273/HORTSCI.48.4.485
Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A., & Cohen, R. (2004). Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigor, survival and yield of grafted melons. Journal of Horticultural Science & Biotechnology. 79, 370-374. https://doi.org/10.1080/14620316.2004.11511775
Farneti, B. (2014). Tomato quality: from the field to the consumer interactions between genotype, cultivation and postharvest conditions. [Doctoral dissertation, Wageningen University].
Fernandez-Garcia, N., Martinez, V. & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science. 167, 616– 622. http://dx.doi.org/10.1002/jpln.200420416
Flores, B. F., Sanchez-Bel, P., Estan, M. T., Martinez-Rodriguez, M. M., Moyano, E., Morales, B., Campos, J. F., Garcia-Abellan, J. O., Egea, M. I., Fernandez-Garcia, N., Romojaro, F., & Bolarin, M. C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125(3), 211–217. https://doi.org/10.1016/j.scienta.2010.03.026
Gaion, L. A., Braz, L. T., & Carvalho, R. F. (2018). Grafting in vegetable crops: a great technique for agriculture. International Journal of Vegetable Science, 24 (1), 85–102. https://doi.org/10.1080/19315260.2017.1357062
Heuvelink, E., (2005). Developmental processes. In: Heuvelink, E. (Ed.), Tomatoes (pp. 53–83). Crop Production Science in Horticulture Series 13. CABI Pub., Wallingford, Oxfordshire,
Hu, B. (2016). Improved tomato grafting technologies. [Doctoral dissertation, Ohio State University].
Ilić, Z. S., & Fallik, E. (2017). Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environmental and Experimental Botany, 139, 79–90. http://dx.doi.org/10.1016/j.envexpbot.2017.04.006
Jing, X., Wang, H., Gong, B., Liu, S., Wei, M., Ai, X., Li, Y., & Shi, Q. (2018). Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiology and Biochemistry, 124, 77–87. https://doi.org/10.1016/j.plaphy.2017.12.039 .
Karaca, F., Yetişir, H., Solmaz, İ., Candir, E., Kurt, Ş., Sari, N., & Güler, Z. (2012). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, yield and quality. Turkish Journal of Agriculture and Forestry, 36 (2), 167–177. http://dx.doi.org/10.3906/tar-1101-1716
Lamptey, S., & Koomson, E. (2021). The role of staking and pruning methods on yield and profitability of tomato (Solanum lycopersicum L.) production in the guinea savanna zone of Ghana. Advances in Agriculture, 2021 (3&4), 1-7. https://doi.org/10.1155/2021/5570567
Lee J. M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61–124. https://doi.org/10.1002/9780470650851.ch2
Lee, J. M., Kubota, C., Tsao, S. J., Bie., Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques. Scientia Horticulturae 127, 93-105. http://dx.doi.org/10.1016/j.scienta.2010.08.003
Lee, K. M., Lim, C. H., Muneer, S., & Jeong, B.R. (2016). Functional vascular connections and light quality effects on tomato grafted unions. Scientia Horticulturae, 201, 306–317. http://dx.doi.org/10.1016/j.scienta.2016.02.013
Lhamo, T., Gyalmo, T., Pem, T., & Bajgai, Y. (2022). Effect of different pruning systems on yield and quality of tomato grown under greenhouse. Bhutanese Journal of Agriculture, 5(1), 71–82. https://doi.org/10.55925/btagr.22.5106
Li, F., Li, Y., Li, S., Wu, G., Niu, X., & Shen, A. (2021). Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings. Scientia Horticulturae. 289, 110503 https://doi.org/10.1016/j.scienta.2021.110503
Maboko, M. M., & Du Plooy, C. P. (2008). Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon esculentum). South African Journal of Plant and Soil, 25 (3), 178-181. http://dx.doi.org/10.1080/02571862.2008.10639914
National Canners Association. (1968). Laboratory manual for food canners and processors. (3d ed.) AVI Publishing Company. Westport, Conn.
Mngoma, M. F. (2020). Investigating the effect of trellising and stem training methods on the horticultural performance of indeterminate tomatoes grown in dome shape tunnels. [Master of Science thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa].
Mohammed, S. M. T., Humidan, M., Boras, M., & Abdalla, O. A. (2009). Effect of grafting tomato on different rootstocks on growth and productivity under glasshouse conditions. Asian Journal of Agricultural Research, 3(2), 47-54. http://dx.doi.org/10.3923/ajar.2009.47.54
Moosavi-Nezhad, M., Salehi, R., Aliniaeifard, S., Tsaniklidis, G., Woltering, E. J., Fanourakis, D., Zuk-Gołaszewska, K., & Kalaji, H. M. (2021). Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings. International Journal of Molecular Sciences, 22,8043. https://doi.org/10.3390/ijms22158043
Mourão, I., Brito, L. M., & Moura, L. (2017). The effect of pruning systems on yield and fruit quality of grafted tomato. Horticultura Brasileira, 35, 247-251. http://dx.doi.org/10.1590/S0102-053620170215
Pathak, S., Akhade, P., Gajanan Bhojane, K., Sadar, D., Folane, P., Biyani, K. R., & Pathak, S. S. (2020). A review on recent techniques of extraction and isolation of lycopene from tomato. International Journal of Research and Review, 7(4), 478-490.
Perin, L., Peil, R. M. N., Signorini, C., Grolli, P. R., Streck, E. A., da Rosa, D. S. B., Neutzling, C., Marques, G. N., & Wieth, A. R. (2023). Effect of grafting and number of stems on plant growth, yield and fruit quality of soilless tomatoes. Australian Journal of Crop Science, 17(1), 99–106. https://doi.org/10.21475/ajcs.23.17.01.p3813
Pugalendhi, L., Bharathi, S., Priya, R. S., & Velmurugan, M. (2021). Biochemical and quality attributes of grafted tomato (Solanum lycopesicum L.). The Pharma Innovation Journal, 10 (8), 333–338.
Pulgar, G., Rivero, R. M., Moreno, D. A., Lopez-Lefebre, L. R., Villora, G., Baghour, M., & Romero, L. (1998). Micronutrientes en hojas de sandía injertadas. VII Simposio Nacional-III Ibérico Sobre Nutrición Mineral de Las Plantas. Gárate A. (Ed.), Universidad Autónoma de Madrid, Madrid, 255–260.
Purkayastha, M. Das, & Mahanta, C. L. (2011). Physicochemical properties of five different tomato cultivars of Meghalaya and their suitability in food processing. Journal of Food Science, 5(12), 657–667.
Rahmatian, A., Delshad, M., & Salehi, R. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture Environment and Biotechnology, 55(2), 115–119. https://doi.org/10.1007/s13580-014-0167-6
Rivard, C.L. & F. J. Louws. (2008). Grafting to manage soilborne diseases in heirloom tomato production. HortScience, 43(7), 2104-2111. http://dx.doi.org/10.21273/HORTSCI.43.7.2104
Rivard, C. L., O'Connell, S., M. M., Peet, & Louws, F. J.  (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease. 94(8), 1015-1021. http://dx.doi.org/10.1094/PDIS-94-8-1015
Sablani, S. S., Opara, L. U., & Al-Balushi, K. (2006). Influence of bruising and storage temperature on vitamin C content of tomato fruit. Journal of Food Agriculture and Environment, 4 (1), 54-56.
Sakata, Y., Ohara, T. & Sugiyama, M. 2008. The history of melon and cucumber grafting in Japan. Acta Horticulturae. 767, 217–228. http://dx.doi.org/10.17660/ActaHortic.2008.767.22
Schwarz, D., Rouphael, Y., Colla, G. & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162-171. http://dx.doi.org/10.1016/j.scienta.2010.09.016
Singh, H., Kumar, P., Chaudhari, S., & Edelstein, M. (2017). Tomato grafting: a global perspective. HortScience, 52(10), 1328-1336. http://dx.doi.org/10.21273/HORTSCI11996-17
Soare, R., Dinu, M., & Babeanu, C. (2018). The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Horticultural Science, 45 (2), 76–82 http://dx.doi.org/10.17221/214/2016-HORTSCI
Tepic, A. N., Vejicic, B. L., Takac, A. J., Kristic, B. D., & Calic L. J. (2006). Chemical heterogeneity of tomato inbred lines. Acta Periodica Technologica, 37, 45-50. http://dx.doi.org/10.2298/APT0637045T
Turhan, A., Ozmen, N., Serbeci, M. S., & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4), 142–149. http://dx.doi.org/10.17221/51/2011-HORTSCI 
Yang, X., Hu, X., Zhang, M., Xu, J., Ren, R., Liu, G., & Chen, X. (2016). Effect of low night temperature on graft union formation in watermelon grafted onto bottle gourd rootstock. Scientia Horticulturae, 212, 29-34. https://doi.org/10.1016/j.scienta.2016.09.010
Yousef, A. F., Ali, M. M., Rizwan, H. M., Ahmed, M. A. A., Ali, W. M., Kalaji, H. M., Elsheery, N., Wróbel, J., Xu, Y., & Chen, F. (2021 a). Effects of light spectrum on morphophysiological traits of grafted tomato seedlings. PLOS ONE, 16, e0250210. https://doi.org/10.1371/journal.pone.0250210
Yousef, A. F., Ali, M. M., Rizwan, H. M., Gad, A. G., Liang, D., Binqi, L., Kalaji, H. M., Wróbel, J., Xu, Y., & Chen, F. (2021 b). Light quality and quantity affect graft union formation of tomato plants. Scientific Reports, 11(1), 9870. https://www.nature.com/articles/s41598-021-88971-5
Zhang, Z., Cao, B., Gao, S., & Xu, K. (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256(4), 1013–1024. https://link.springer.com/article/10.1007/s00709-019-01357-3