بررسی تأثیر محلولپاشی پوترسین بر روند تغییرات برخی صفات بیوشیمیایی دانهالهای لیموترش تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز ایران

چکیده

تنش خشکی از جمله تنش‌های غیرزنده‌ای است که اثرات سوء بر فرایند رشد و نمو گیاهان نظیر مرکبات دارد. یکی از مواد تاثیر‌گذار در کاهش و تعدیل تنش خشکی بر گیاهان پلی‌آمین‌ها هستند. پلی‌آمین‌ها (پوترسین، اسپرمین و اسپرمیدین) نوعی ماده تنظیم کننده رشد نیتروژنی هستند که در همه موجودات زنده وجود دارند. به منظور بررسی اثر سطوح مختلف پوترسین (0، 5/0، 1 و 2 میلی‌مولار) و سطوح مختلف آبیاری (100، 75 و 50 درصد پتانسیل تبخیر و تعرق) بر صفات بیوشیمیایی لیموترش آزمایشی به صورت اندازه‌گیری تکراری در قالب طرح بلوک‌های کامل تصادفی با 3 تکرار طی سال‌های 99-1398 در گلخانه دانشکده کشاورزی دانشگاه شهید چمران اهواز صورت گرفت. نتایج به دست آمده نشان داد که تنش خشکی در سطوح 50 و 75 درصد تبخیر و تعرق به طور معنی‌داری میزان پرولین، کربوهیدرات محلول کل، مالون‌دی‌آلدهید، پروتئین و فعالیت آنزیم پراکسیداز را افزایش و کلروفیل را کاهش داد. کاربرد پوترسین با غلظت‌های 1 و 2 میلی‌مولار به همراه آبیاری کامل میزان کلروفیل، پرولین، کربوهیدرات محلول کل، پروتئین و فعالیت آنزیم پراکسیداز را افزایش داد و میزان مالون‌دی‌آلدهید را کاهش داد. به طور کلی نتایج نشان داد که کاربرد پلی‌آمین‌ها موجب بهبود خصوصیات بیوشیمیایی و افزایش مقاومت نهال‌های لیموترش به تنش خشکی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of putrescine foliar application on changes in some biochemical traits of lime seedling under drought stress

نویسندگان [English]

  • Esmaeil Khaleghi
  • Masumeh Zamani Debari
  • Noorallah Moalemi
Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Drought stress is one of the abiotic stresses that has adverse effects on the growth process of plants such as citrus fruits. Polyamines, a type of nitrogenous growth regulators, such as putrescine, spermine and spermidine are the most effective substances to reduce and modulate the adverse effects of drought stress on plants and present in all living organisms. In order to investigate the effect of different levels of putrescine (0, 0.5, 1 and 2 mM) and different levels of irrigation (100, 75 and 50% of evaporation and transpiration potential) on biochemical traits of lime a factorial experiment was conducted in the form of randomized complete blocks design and repeated measurements with 3 repetitions during 2018-2019 in the greenhouse of the Faculty of Agriculture of Shahid Chamran University, Ahvaz. The results showed that drought stress at the levels of 50 and 75% evaporation and transpiration significantly increased the amount of proline, total soluble carbohydrate, malondialdehyde, protein and peroxidase activity and decreased chlorophyll. The use of putrescine with concentrations of 1 and 2 mM along with full irrigation increased the amount of chlorophyll, proline, total soluble carbohydrate, protein and peroxidase activity and decreased the amount of malondialdehyde. In general, the results showed that the use of polyamines improved the biochemical characteristics and increased the resistance of lime seedlings to drought stress.  

کلیدواژه‌ها [English]

  • Carbohydrate
  • Proline
  • Peroxidase
  • Stress

Extended Abstract

Introduction

Drought stress is one of the abiotic stresses that has a significant impact on growth and development of plants including citrus fruits. Polyamines are among the most efficacious substances to deal with various stresses, including drought. They are a type of nitrogenous growth regulator, present in all living organisms, and include putrescine, spermine and spermidine, which play a role in a wide range of growth and development processes such as cell division, morphogenesis, flowering, senescence delay, membrane stability, etc. The purpose of this research was investigating the effect of foliar application of putrescine on the changes of some biochemical traits of two-year-old lime seedlings under drought stress condition.

 

Material and methods

In order to study the effect of different levels of putrescine (0, 0.5, 1 and 2 mM) and different levels of irrigation (100, 75 and 50% of transpiration potential) an experiment was performed in the form of randomized complete blocks design and repeated measurements with 3 repetitions during 2018-2019 in the greenhouse of the Faculty of Agriculture of Shahid Chamran University, Ahvaz. The first putrescine foliar spraying was done on the first of March in the condition of field capacity, and foliar spraying was done once every month and continued for 4 months. At the end of the experiment, the content of chlorophyll, proline, total soluble carbohydrate, protein and peroxidase enzyme activity were measured.

 

Results and Discussion

The obtained results showed that drought stress at the levels of 50 and 75% evaporation and transpiration potential significantly increased the amount of proline, total soluble carbohydrate, malondialdehyde, protein and peroxidase enzyme activity and decreased chlorophyll. The use of putrescine at the concentrations of 1 and 2 mM along with full irrigation increased the amount of chlorophyll, proline, total soluble carbohydrate, protein and peroxidase enzyme activity and decreased the amount of malondialdehyde. The lowest and highest amount of total chlorophyll was obtained at the highest level of drought stress and putrescine, respectively. The highest amount of proline and malondialdehyde was observed in the treatment of 50% evaporation and transpiration potential without putrescine solution spraying. Also, irrigation treatment at 50% plant evaporation and transpiration potential and 2 mM putrescine had the highest amount of carbohydrates and peroxidase enzyme activity.

 

Conclusion

According to the results, foliar application of putrescine at concentrations of 1 and 2 mM reduced the amount of malondialdehyde and increased chlorophyll, proline, carbohydrate content and peroxidase enzyme activity under drought stress conditions. In general, the use of putrescine improved the biochemical characteristics and increased the resistance of lime seedlings to drought stress.

پروین، پریسا و خضری، مسعود (1394). بررسی اثر محلولپاشی پوترسین بر افزایش تحمل دانهال های گردوی ایرانی (Juglans regia) به تنش خشکی. نشریه علوم باغبانی ایران، 46 (1)، 99-109.
رضوی زاده، رویا؛ ادب آواژه، فاطمه؛ رستمی، فاطمه و تیموری، عباس (1394). بررسی مقایسه ای اثرات استرس اسمزی بر مکانیسم های دفاعی و متابولیت های ثانویه در گیاهچه و کالوس Carum copticum. مجله فرآیند و عملکرد گیاه، 5 (18)، 23-22.
 کریمی، زهرا؛ توحیدی‌مقدم، حمید‌رضا و کسرایی، پورنگ (1393). تاثیر محلول‌پاشی پوترسین روی مقاومت آنتی‌اکسیدانی گندم رقم SW- 82-9 تحت شرایط تنش کم آبی. پژوهشهای زراعی در حاشیه کویر،  3 (11)، 209-217.
معلمی، نورالله؛ خالقی، اسماعیل و دانایی فر، عباس (1401). بررسی تاثیر استفاده از سه نوع پلیمر سوپرجاذب بر جذب N.P.K آکاسیا در شرایط تنش خشکی. مجله مهندسی کشاورزی، 45(2)، 153-166.
 
 RERERENCES
Ahmed, A. H., Darwish, E. & Alobaidy, M. G. (2017). Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Asian Journal of Plant Sciences, 16(1), 9-23. http://dx.doi.org/10.3923/ajps.2017.9.23
Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C. & Tiburcio, A. F. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231(6), 1237-1249. http://dx.doi.org/10.1007/s00425-010-1130-0
Amri, E. & Mohammadi, M.J. (2012). Effects of timing of drought stress on pomegranate seedlings (Punica granatum L. cv. ‘Atabaki’) to exogenous spermidine and putrescine polyamines. African Journal of Microbiology Research, 6(25), 5294-5300. http://dx.doi.org/10.5897/AJMR11.1355
Anjum, M.A. (2010). Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress. Acta Physiologiae Plantarum, 32, 951-959.
Bacelar, E. A., Moutinho-Pereira, J. M., Gonçalves, B. C., Lopes, J. I. & Correia, C. M. (2009). Physiological responses of different olive genotypes to drought conditions. Acta Physiologiae Plantarum, 31(3), 611-621. http://dx.doi.org/10.1007/s11738-009-0272-9
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. http://dx.doi.org/10.1007/BF00018060
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 7(72), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Chaitanya, K.V., Rasineni, G. K. & Reddy, A. R. (2009). Biochemical responses to drought stress in mulberry (Morus alba L.): evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars. Acta Physiologiae Plantarum, 31(3), 437-443. http://dx.doi.org/10.1007/s11738-008-0251-6
Danaeifar, A., Khaleghi, E., Zivdar, S. & Mehdikhanlou, K. (2023). Physiological, biochemical, and gene expression of Sour Orange (Citrus aurantium L.) to Iron (II)-Arginine Chelate under salinity, alkalinity, and salt–alkali combined stresses. Scientia Horticulturae, 319, 112146. http://dx.doi.org/10.1016/j.scienta.2023.112146
Dasgupta, J. & Bewley, J.D. (1984). Variations in protein synthesis in different regions of greening leaves of barley seedlings & effects of imposed water stress. Journal of Experimental Botany, 35(10), 1450-1459. https://doi.org/10.1093/jxb/35.10.1450
Ebrahimi, A., Naqvi, M. & Sabokdast, M. (2010). Comparison of different species of barely landraces in terms of chlorophyll, carotenoids, protein and enzyme. Crop Sci, 41(1), 57-65.
El–Bassiouny, H. M. Mostafa, H. A. El–Khawas, S. A. Hassanein, R. A., Khalil, S.I. & Abd El–Monem, A. A. (2008). Physiological responses of wheat plant to foliar treatments with arginine or putrescine. Australian Journal of Basic and Applied Sciences, 2(4), 1390-1403.
Faiber, B. (2015). Irrigating citrus with limited water. ANR publication, 8549, 1-6.
Gao, S., Kang, H., An, X., Cheng, Y., Chen, H., Chen, Y. & Li, S. (2022). Non-destructive storage time prediction of Newhall Navel oranges based on the characteristics of rind oil glands. Frontiers in Plant Science, 13, 1-11. https://doi.org/10.3389/fpls.2022.811630
Ghahremani, Z., Alizadeh, B., Barzegar, T., Nikbakht, J., Ranjbar, M. E. & Nezamdoost, D. (2023). The mechanism of enhancing drought tolerance threshold of pepper plant treated with putrescine and salicylic acid. Plant Stress, 9(2), 100199. http://dx.doi.org/10.1016/j.stress.2023.100199
Gill, S. S. & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, 5(1), 26-33. http://dx.doi.org/10.4161/psb.5.1.10291
Gupta, S., Agarwal, V. P. & Gupta, N. K. (2012). Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 18(4), 331-336. http://dx.doi.org/10.1007/s12298-012-0123-9
Groppa, M. & Benavides, M. (2008). Polyamines and abiotic stress: recent advances. Amino Acids, 34(1), 35-45. http://dx.doi.org/10.1007/s00726-007-0501-8
Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics andstoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
Hemeda, H. & Klein, B. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55(1), 184-185. http://dx.doi.org/10.1111/j.1365-2621.1990.tb06048.x
Hojati, M., Modarres-Sanavy, S. A. M., Karimi, M. & Ghanati, F. (2011). Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 33(1), 105-112. http://dx.doi.org/10.1007/s11738-010-0521-y
Hussein, H. A. A., Alshammari, S. O., Abd El-Sadek, M. E., Kenawy, S. K. & Badawy, A. A. (2023). The promotive effect of putrescine on growth, biochemical constituents, & yield of wheat (Triticum aestivum L.) plants under water stress. Agriculture, 13(3), 587. http://dx.doi.org/10.3390/agriculture13030587
Inskeep, W.P. & Bloom, P. R. (1985). Extinction coefficients of chlorophyll a & b in N, N-dimethylformamide & 80% acetone. Plant Physiology, 77(2), 483-485. https://doi.org/10.1104/pp.77.2.483
Irigoyen, J., Einerich, D. & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline & total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Jafari, M. & Shahsavar, A. (2021). The effect of foliar application of melatonin on changes in secondary metabolite contents in two Citrus species under drought stress conditions. Frontiers in Plant Science, 12, 692735. https://doi.org/10.3389/fpls.2021.692735
Karimi, Z., Tohidi Moghadam, H. R. & Kasraee, P. (2016). The effect of putrescine foliar application on physiologic characteristics of wheat Tiriticum aestivum var. sw-82-9 under cut irrigation stress. Agronomic Research in Semi Desert Regions, 11(3), 209-217. (In Persian).
Khaleghi, E., Arzani, K., Moallemi, N. & Barzegar, M. (2015). The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv ‘Zard’ grown under warm and semi-arid region of Iran. Food Chemistry, 166, 35-41. http://dx.doi.org/10.1016/j.foodchem.2014.06.006
Kim, J. K., Bamba, T., Harada, K., Fukusaki, E. & Kobayashi, A. (2007). Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 58(3), 415-424. https://doi.org/10.1093/jxb/erl216
Kusano, T., Berberich, T., Tateda, C. & Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta, 228(3), 367-381. https://doi.org/10.1007/s00425-008-0772-7
Kuznetsov, V. & Shevyakova, N. I. (1997). Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum, 100(2), 320-326. http://dx.doi.org/10.1111/j.1399-3054.1997.tb04789.x
Lichtenthaler, H.K. & Wellburn, A.R. (1983). Determinations of total carotenoids & chlorophylls a & b of leaf extracts in different solvents. Biochemical Society transactions, 11, 591-592. https://doi.org/10.1042/BST0110591
Liu, F., Savić, S., Jensen, C. R., Shahnazari, A., Jacobsen, S. E., Stikić, R. & Andersen, M. N. (2007). Water relations and yield of lysimeter-grown strawberries under limited irrigation. Scientia Horticulturae, 111(2), 128-132. https://doi.org/10.1016/j.scienta.2006.10.006
Liu, M., Chen, J., Guo, Z. & Lu, S. (2017). Differential responses of polyamines and antioxidants to drought in a centipedegrass mutant in comparison to its wild type plants. Frontiers in Plant Science, 8, 792. https://doi.org/10.3389/fpls.2017.00792
Mahdavian, M., Sarikhani, H., Hadadinejad, M. & Dehestani, A. (2020). Putrescine effect on physiological, morphological, and biochemical traits of carrizo citrange and volkameriana rootstocks under flooding stress. International Journal of Fruit Science, 20(2), 164-177. https://doi.org/10.1080/15538362.2019.1605560
Mahdavian, M., Sarikhani, H., Hadadinejad, M. & Dehestani, A. (2021). Exogenous application of putrescine positively enhances the drought stress response in two citrus rootstocks by increasing expression of stress-related genes. Journal of Soil Science & Plant Nutrition, 21(3), 1934-1948. https://doi.org/10.1007/s42729-021-00491-3
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. https://doi.org/10.1016/s1360-1385(02)02312-9
Moallemi, N., Khaleghi, E.& Danaeifar, A. (2022). Investigating the effect of using three types of superabsorbent polymers on N.P.K absorption in acacia under drought stress conditions. Journal of Agricultural Engineering, 45(2), 153-166. (In Persian).
Mohamed, S. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Egyptian Journal of Horticulture, 45(2), 257-273. https://doi.org/10.21608/ejoh.2018.3063.1050
Mohammadi, H., Ghorbanpour, M. & Brestic, M. (2018). Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Industrial Crops and Products,122, 119-132. http://dx.doi.org/10.1016/j.indcrop.2018.05.064
Mohammadrezakhani, S., Rezanejad, F. & Hajilou, J. (2021). Effect of putrescine and proline on proflies of GABA, antioxidant activities in leaves of three Citrus species in response to low temperature stress. Journal of Plant Biochemistry and Biotechnology, 30(3), 545-553. https://doi.org/10.1007/s13562-020-00645-x
Parvin, P. & Khezri, M. (2015). Effect of foliar application of putrescine to enhance drought tolerance of Persian walnut (Juglans regia L.) seedlings. Iranian Journal of Horticultural Science, 46(1), 99-109.. https://doi.org/10.22059/ijhs.2015.54129. (In Persian)
Razavizadeh, R., Adabavazeh, F., Rostami, F. & Teimouri, A. (2017). Comparative study of osmotic stress effects on the defense mechanisms and secondary metabolites in Carum copticum seedling and callus. Journal of Plant Process and Function, 5(18), 23-33. (In Persian)
Sairam, R. K., Rao, K. V. & Srivastava, G. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046. http://dx.doi.org/10.1016/S0168-9452(02)00278-9
Salekjalali, M., Haddad, R. & Jafari, B. (2012). Effects of soil water shortages on the activity of antioxidant enzymes and the contents of chlorophylls and proteins in barley. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(1), 57-63.
Saruhan, N., Turgut-Terzi, R. & Kadioglu, A. (2006). The effects of exogenous polyamines on some biochemical changes during drought stress in Ctenanthe setosa (Rosc.) Eichler. Acta Biologica Hungarica, 57(2), 221-229. https://doi.org/10.1556/abiol.57.2006.2.9
Shafiei, N., Khaleghi, E. & Moallemi, N. (2019). Effect of salicylic acid on some morphological & biochemical characteristics of Olive (Olea europaea cv.‘Konservalia’) under water stress. Plant Productions, 42(1) 15-30.(In Persian). https://doi.org/10.22055/ppd.2019.22031.1477
Singh Gill, S. & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plant. Plant Signaling and Behavior, 5(1), 26-33. http://dx.doi.org/10.4161/psb.5.1.10291
Sofo, A., Manfreda, S., Fiorentino, M., Dichio, B. & Xiloyannis, C. (2008). The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrology and Earth System Sciences, 12(1), 293-301. http://dx.doi.org/10.5194/hessd-4-2811-2007
Toumi, I., Moschou, P. N., Paschalidis, K. A., Bouamama, B., Salem-Fnayou, A. B., Ghorbel, A. W. & Roubelakis-Angelakis, K. A. (2010). Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. Journal of Plant Physiology, 167(7), 519-525. https://doi.org/10.1016/j.jplph.2009.10.022
Toupchi Khosrowshahi, Z., Salehi-Lisar, S. Y., Ghassemi-Golezani, K. & Motafakkerazad, R. (2018). Physiological responses of safflower to exogenous putrescine under water deficit. Journal of Stress Physiology and Biochemistry, 14(3), 38-48.
Wang, S., Liang, D., Li, C., Hao, Y., Ma, F. & Shu, H. (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry,51, 81-89. https://doi.org/10.1016/j.plaphy.2011.10.014
Wright, G. C. 2000. Irrigating citrus trees. 1-5. ag.arizona.edu/pubs/ crops/az1151.pdf  http://hdl.handle.net/10150/144778
Xie, S., Liu, Q., Xiong, X. & Lovatt, C. J. (2012). Effect of water stress on Citrus photosynthetic characteristics. Acta Horticulturae, (928), 315-322.
Yin, Z. P., Li, S., Ren, J. & Song, X. S. (2014). Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings. Plant Growth Regulation, 74(3), 209-218. http://dx.doi.org/10.1007/s10725-014-9912-1
Zhao, H. & Yang, H. (2008). Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Scientia Horticulturae,116(4), 442-447. http://dx.doi.org/10.1016/j.scienta.2008.02.017
Zokaee Khosroshahi, M.R., Esna-Ashari, M. & Ershadi, A. (2007). Effect of exogenous putrescine on post-harvest life of strawberry (Fragaria ananassa Duch.) fruit, cultivar Selva. Scientia Horticulturae, 114(1):, 27-32. http://dx.doi.org/10.1016/j.scienta.2007.05.006