اثر تیمارهای مختلف آب آبیاری بر میزان پرولین، فعالیت ضد اکسایش برگ و خصوصیات کمی و کیفی میوه انار رقم رباب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات و آموزش کشاورزی، شیراز ، ایران.

2 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات و آموزش کشاورزی، شیراز، ایران

چکیده

انار با نام علمی L. Punica granatum درختی نیمه گرمسیری است که در بسیاری از مناطق ایران کشت می‌شود. شرایط مناسب آب و هوایی جهت رشد و نمو و باردهی انار آب و هوای معتدل تا  نیمه گرم می باشد که این شرایط در بسیاری از نقاط ایران وجود دارد . تغییر شرایط جوی و کاهش بارندگی سالیانه که در سال‌های اخیر در بیشتر مناطق انار‌کاری حکم فرما شده است باعث ایجاد تنش در باغات انار گردیده و رشد و نمو و باردهی درختان را تحت تاثیر قرار داده است. به این لحاظ برای ارزیابی واکنش درخت انار رقم رباب به رژیم‌های مختلف آبیاری، پژوهش حاضر در طی سال-های 1399 و 1400 در شهرستان کوه چنار در استان فارس انجام شد. آزمایش در  قالب طرح بلوک‌های کامل تصادفی با سه تکرار و به مدت دو سال متوالی انجام شد. پنج تیمار آبیاری شامل، شاهد (آبیاری باغ توسط باغ‌دار به میزان 15000 متر مکعب در سال) و آبیاری هنگام رسیدن خاک به تخلیه رطوبتی 35 ، 50 ، 65 و 80 درصد بود. نتایج نشان داد کاهش میزان آب آبیاری باعث کاهش میزان عملکرد (22 تا 40 درصد) در تمام تیمارهای کم آبیاری و کاهش معنی‌دار در وزن میوه (12 تا 28 درصد) و وزن خشک آریل در تیمار تخلیه رطوبتی 65 و 80 درصد شد. بیشترین میزان پرولین در تخلیه رطوبتی 80 درصد به میزان476/0 میکرو مولار در وزن تازه برگ مشاهده شد .فعالیت آنزیم‌های ضد اکسایش نیز با کاهش آب آبیاری افزایش یافت، به‌طوری که بیشترین فعالیت آنزیم‌های کاتالاز (47/0 واحد در دقیقه در میلی گرم پروتئین) و سوپر اکسید دیسموتاز (029/1 واحد در دقیقه در میلی گرم پروتئین) در تخلیه رطوبتی 50 درصد مشاهده شد. با توجه به تغییرات مواد ضد اکسایش و متوسط وزن میوه، وزن آریل و درصد دانه سفیدی می‌توان نتیجه گرفت که درخت انار رقم رباب تا تخلیه رطوبتی 50 درصد را بخوبی تحمل کرده و میوه کیفیت خود را حفظ می‌کند ولی تخلیه رطوبتی بالاتر (65 و80 درصد) باعث کاهش در خصوصیات کمی و کیفی و عملکرد میوه شده و دانه سفیدی میوه افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Different Irrigation Regimes on Leaf Proline Content, Antioxidant Enzymes Activity and Fruit Quantitative and Qualitative Characteristics of ،Rabbab’ Pomegranate

نویسندگان [English]

  • Alireza Bonyanpour 1
  • Mohammad Ali Shahrokhnia 2
1 Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center,( AREEO) Shiraz, Iran
2 Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education Center, (AREEO) Shiraz, Iran
چکیده [English]

Pomegranate (Punica granatum) is a subtropical tree that is cultivated in many regions of Iran with . temperate and subtropical climates. In recent years, climatic changes and decrease in annual rainfall prevailed in the most pomegranate growing areas has affected the growth and fruiting of trees in pomegranate orchards. In order to evaluate the responses of ‘Rabbab’ pomegranate tree to different irrigation regimes, the present study was carried out during 2019 and 2020 in Koh-Chenar city in Fars province. The experiment was conducted in the form of a randomized complete block design with three replications in two consecutive years The irrigation regimes applied to the pomegranate trees consisted of control (orchard irrigation with 15,000 m3 of water), irrigation at 35%, 50%, 65% and 80% soil moisture depletion. The results showed that reducing the amount of irrigation water decreased yield  by %22 to % 40 in all low irrigation treatments. Irrigation at 65 and 80% of moisture depletion also significantly decreased the fruit weight by 12 to %28 and aril dry weight. The highest amount of proline (0.476 µmol/ leaves fresh weigh) was observed in 80% soil moisture depletion. The activity of antioxidant enzymes also increased with the reduction of irrigation water, so that the highest activity of catalase enzymes (0.47 u/mg protein/min.) and superoxide dismutase (1. 0.47 u/mg protein/min) were observed in 50% soil moisture depletion. According to the changes in antioxidant activities and the average of fruit weight, aril weight and percentage of aril paleness, it can be concluded that ‘Rabbab’ pomegranate tree can tolerate water deficit up to 50% soil moisture depletion and maintain fruit quality, but the higher levels of soil moisture depletion (65 and 80%) cause a decrease in the quantitative and qualitative characteristics of the fruit and yield, and increase the percentage of aril paleness.

کلیدواژه‌ها [English]

  • Aril paleness
  • fruit quality
  • antioxidants
  • irrigation regims

Extended Abstract

Introduction

Pomegranate (Punica granatum) is a subtropical tree that is cultivated in most regions of the Iran. The main areas of pomegranate cultivation in Iran have a hot and dry climate, so drought and heat stress are one of the most important problems of Iranian pomegranate orchards. This has affected the physiological characteristics of the tree, resulting in a reduction in the quantity and quality of the fruit. Some physiological abnormalities such as aril paleness and fruit cracking in pomegranates fruits are caused by water stress, therefore, adjusting the irrigation regimes and determining the tolerance of pomegranate to water deficit is very important. In this research, the quality of pomegranate fruits on different water irrigation regimes were investigated in order to determine the tolerance of pomegranate to drought conditions.

 

 

Material and methods

For evaluation of different responses of ‘Rabbab’ pomegranate trees and fruits to various irrigation regimes, present study was carried out on uniform ‘Rabbab’ pomegranate trees in Kooh-chenar region, Fars Province, south of Iran. The experiment was conducted in two consecutive years in the randomized complete block design with 3 replications on 15-year-old pomegranate trees. Treatments included: Control (irrigation according to recommended plans suitable for commercial fruit production) and irrigations to field capacity at 35%, 50% ,65% and 80% of soil moisture depletion. In this experiment, some vegetative characteristics such as leaf dry weight, chlorophyll content, leaf proline content, antioxidant activity (superoxidase, catalase and peroxidase) were measured. Fruit characteristics such as aril weight, fruit weight, yield, anthocyanin and phenol contents, acidity and total soluble solids (TSS) of fruit juice were also measured. The amount of fruit juice polyphenols was evaluated using HPLC.

 

Results and discussion

Our results indicated that ‘Rabbab’ pomegranate cultivar is able to tolerate mild irrigation deficit (50% soil moisture depletion), since under such conditions, parameters such as leaf chlorophyll content and leaf dry weight did not change and the activity of catalase and superoxide dismutase enzymes raised to the highest amount. The highest amount of proline (0.476 molar in 1g leaf fresh weight) was observed in 80% soil moisture depletion treatment. Regarding fruit characteristics, the reduction of irrigation water resulted in a decrease in fruit weight from 202 g in the control treatment to 137 g in the 80% soil moisture depletion treatment. A similar decrease was observed in arils weight and the yield. The highest aril fresh weight (22 g) was observed in control plants, whereas the lowest weight (15.5 g), was observed in soil moisture depletion of 80%. Different irrigation regimes did not significantly affect the number of arils dry weigh.  The highest yield was observed in control trees (89 kg per tree), which was significantly superior to all irrigation treatments. The highest percentage of aril paleness (60%) was observed in 80% soil moisture depletion, while other treatments showed any no significant difference with the control, this could be due to the disturbance in photosynthesis and plant metabolism that occurs in plants subjected to severe conditions. In the present study, fruit quantitative parameters such as fruit weight and aril fresh weight decreased in low irrigation conditions, which was consistent with previous studies. The reduction of irrigation water caused a decrease in nitrogen absorption and increase in the accumulation of potassium in the leaves, so that the minimum amount of nitrogen was observed in 80% soil moisture depletion, and maximum amount of potassium obtained in 65% soil moisture depletion  The analysis of polyphenols in pomegranate fruit juice showed that the highest hesperidin, gallic acid and ellagic acid amount observed in the 80% soil moisture depletion treatment, which had a significant difference with most of the treatments and the control. The amount of coumaric acid was the highest in the 35% soil moisture depletion treatment, while the highest amount of vanillin was observed in the 50% soil moisture depletion treatment. Under drought stress condition, the synthesis of some polyphenolic compounds changes, which may be related to modifications in the activity of certain genes.

 

Conclusion

According to the results of this study, ‘Rabbab’ pomegranate could tolerate mild to moderate drought stress. Reducing irrigation water to 50% soil moisture depletion had a small effect on some characteristics, such as leaf chlorophyll concentration, aril dry weight and plant performance, whereas reducing the soil moisture to more than 50% resulted in an increase in fruit disorders like aril paleness and significant decrease in quantity and quality of the fruit.

 

 

آمارنامه کشاورزی (1400). وزارت جهاد کشاورزی معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات.
راد، محمد‌هادی؛ اصغری، محمد‌رضا؛ و عصاره، محمد حسن (1394). تاثیر تنش خشکی در رشد، عملکرد و کیفیت میوه انار رقم رباب در شرایط تنش خشکی. 31-2(1)، 75-90.
REFERENCES
Abedi, T & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding. 46(1), 27–34. http://dx.doi.org/10.17221/67/2009-CJGPB
Agricultural statics. (2021). Ministry of Jihad and Agriculture, Planning and Economic Deputy, Information and Communication Technology Center. (In Persian)
André, C. M, Schafleitner, R., Legay, C., Lefèvre, I., Alvarado Aliaga, C., Nomberto, J., Hoffmann, L., Hausman, J., Larondelle, Y. & Evers, D. (2009). Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistery, 70(9), 1107-1116. https://doi.org/10.1016/j.phytochem.2009.07.008
Bates, L. S., Waldren, R. P & Teave, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
Beauchamp C, Fridovich I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochemistery, 44(1):276-87. doi: 10.1016/0003-2697(71)90370-8.
Blokhina, O., Vitolainen, E. & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. Annales of Botany. 91, 179–194. http://dx.doi.org/10.1093/aob/mcf118
Bonyanpour, A. R. & Jamali, B. (2020). Seasonal enzymatic and non-enzymatic antioxidant in seven Iranian pomegranate cultivars. Advances in Horticultural Science, 34(3), 265-276. https://doi.org/10.13128/ahsc-8283
Bugueño, F., Livellara, N., Varas, F., Undurraga, P., Castro, M., & Salgado, E. (2016). Responses of young Punica granatum plants under four different water regimes. Ciencia e Investigacion. Agraria, 43(1), 49-56. http://dx.doi.org/10.4067/S0718-16202016000100005 
Carmona, L., Alquézar, B., Diretto, G., Sevi, F., Malara, T., Lafuente, M. T. & Peña, L. (2021). Curing and low-temperature combined post-harvest storage enhances anthocyanin biosynthesis in blood oranges. Food and Chemistry, 16, 342, 128334. https://doi.org/10.1016/j.foodchem.2020.128334
Chance, B., & Maehley, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775. https://doi.org/10.1016/S0076-6879(55)02300-8
Dhindsa, R. S., Dhindsa, P. P. & Thorpa, T. A. (1981). Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. https://doi.org/10.1093/jxb/32.1.93
Espades, J. L., Castagn, O. E. & Marina, M. L. (2019). Phenolic compounds increase their concentration in Carica papaya leaves under drought stress. Acta Physiology Plantarum. 41, 180. http://dx.doi.org/10.1007/s11738-019-2972-0
Gao-Takai, M., Katayama-Ikegami, A., Matsuda, K., Shindo, H., Uemae, S. & Oyaizu, M. (2019). A low temperature promotes anthocyanin biosynthesis but does not accelerate endogenous abscisic acid accumulation in red-skinned grapes. Plant Science, 283, 165-176. https://doi.org/10.1016/j.plantsci.2019.01.015
Garg, B. K. )2003(. Nutrient uptake and management under drought: nutrient-moisture interaction. Environmental Science, Biology, 27, 1–8. https://doi.org/10.1201/9780824746728.CH12
Gómez-Bellot, M. J., Garcia, C. J., Parra, A., Vallejo, F. & Ortuño, M. F. (2023). Influence of drought stress on increasing bioactive compounds of pomegranate (Punica granatum L.) juice. Exploratory study using LC–MS-based untargeted metabolomics approach. European Food Research and Technology, 249(11), 2947–2956 https://doi.org/10.1007/s00217-023-04340-8
Halilova, H. & Yildiz, N. (2010). Does climate change have an effect on proline accumulation in pomegranate (Punica granatum L.) fruits? Scientific Research and Essay, 4(12), 1543-1546.
Holland, D., Hatib, K., & Bar-Yáakov, I. (2009). Pomegranate: botany, horticulture, breeding. In: Horticultural Reviews, Janick, J. (ed.), Vol. 35, John Wiley and Sons, Inc. 127-191.
Jamali, B. & Eshghi, S. (2014). Application timing of nitric oxide ameliorates on deleterious effects of salinity on growth and fruit quality of strawberry cv. ‘Selva’. Journal of Berry Research, 4(3),137–145.
Jamali, B., Eshghi, S. & Kholdebarin, B. (2016). Changes in antioxidant activities of strawberry cv. ‘Selva’ as affected by salicylic acid application timing under saline conditions. Journal of Berry Research. 6(3), 291-301. DOI:10.3233/JBR-160130
Jamali, B. & Bonyanpour, A. R. (2018). Comparison of fruit quality characteristics and polyphenolic compounds in seven Iranian pomegranate cultivars. Horticulture International Journal. 2(6), 469‒473. http://dx.doi.org/10.15406/hij.2018.02.00098
Jaleel, C. A. & Llorente, B. E. (2009). Drought stress in plants: A review on water relations. Bioscience Research. 6(1), 20-27.
Kalra, Y.P. (Ed.) (1998). Handbook of reference methods for plant analysis. CRC Press, New York, USA. https://doi.org/10.1201/9780367802233
Khattab, M., Shaban, A., El-Sherif, A. & El-Deen Mohammad, A. (2011). Growth and productivity of pomegranate trees under different irrigation levels I: Vegetative growth and fruiting, Journal of Horticultural Science and ornamental Plants, 3(2), 194-198
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods Enzymology. 148, 350-382.
Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L. & Tang, R. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71(2), 174–183. https://doi.org/10.1016/j.envexpbot.2010.11.012
Martinez, J. P., Silva, H., Ledent, J. F., & Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European. Journal of Agronomy, 26(1), 30–38. https://doi.org/10.1016/j.eja.2006.08.003
Merchi, B., Tekaya, M., Hemamai, M., Chehab, H. (2020). Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochemical Systematics and Ecology, 92, 104-112. http://dx.doi.org/10.1016/j.bse.2020.104112
Misan A. C., Mimica-Dukic N. M., Mandic A. I., Sakac M. B., Milovanovic, I. L., & Sedej, I. J. (2011). Development of a rapid resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plant extracts. Central European Journal of Chemistery, 9(1), 133-142. http://dx.doi.org/10.2478/s11532-010-0126-8.
Naeini, M. R., Khoshgoftarmanesh, A. H. & Fallahi, E. (2006) Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity, Journal of Plant Nutrition, 29(10), 1835-1843. https://doi.org/10.1080/01904160600899352
Okhovatian-Ardakani, A. R., Mehrabanian, M., Dehghani, F. & Akbarzadeh, A. (2010). Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant, Soil and Environment, 56(4), 176-185. https://doi.org/10.17221/158/2009-PSE.
Pagter, M., Bragato, H. & Brix, H. (2005). Tolerance and physiological responses of Phragmites australis to water deficit. Aquatic Botany, 81(4), 285-299. http://dx.doi.org/10.1016/j.aquabot.2005.01.002
Parvizi, H., Sepaskhah, A. R. & Ahmadi, S. H. (2016). Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agricultural Water Management, 163,146–158. https://doi.org/10.1016/j.agwat.2015.09.019
Pourghayumi, M., Rahemi, M., Bakhshi, D., Alami, A. & Kamgar-Haghighi, A. A. (2017). Responses of pomegranate cultivars to severe water stress and recovery: changes on antioxidant enzyme activities, gene expression patterns and water stress responsive metabolites. Physiology and Molecular Biology of Plants, 23(2), 321–330. https://doi.org/10.1007/s12298-017-0435-x
Rad, M. H., Asghari, M. & Asareh M. H. (2015). The Effects of drought stress on growth, yield and fruit quality of Pomegranate (Punica granatum L.) cv. Rababe under dry climate condition. Seed and plant production,31 (1), 75-90. https://doi.org/10.22092/sppj.2017.110567 (In Persian)
Sarker, U. & Oba, S. (2020). Phenolic profiles and antioxidant activities in selected drought-tolerant leafy vegetable amaranth. Scientific Report. 10, 18287 https://doi.org/10.1038/s41598-020-71727-y
Šircelj, H., Tausz, M., Grill, D. & Bati, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162, 1308-1318. doi:10.1016/j.jplph.2005.01.018
Slabbert, M & Kruger, G. (2014). Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. South African Journal of Botany, 95, 123–128. https://doi.org/10.1016/j.sajb.2014.08.008
Taiz, L. & Zeiger, E. (2010) Plant Physiology. Sinauer Associates Inc, USA.
Tavousi, M., Kaveh, F., Alizadeh, A., Babazadeh, H., and Tehranifar, A. (2015). Effects of drought and salinity on yield and water use efficiency in pomegranate tree. Journal of Materials and Environmental Science, 6(7), 1975-1980.
Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N., Abadía, J., Germ, M., Gholami, R. & Abdelrahman, M. (2022) Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers, Agricultural Water Management. 261(25), 107357, https://doi.org/10.1016/j.agwat.2021.107357.