تأثیر محلول‌پاشی سایتوکنین و اسید آمینه بر ویژگی‌های کمی و کیفی میوه کیوی رقم هایوارد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 بخش تحقیقات علوم زراعی- باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.

3 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان ، ایران.

4 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

چکیده

افزایش عملکرد و بهبود کیفیت میوه توأم با وزن بالا، اصلی‌ترین هدف تولیدکنندگان میوه کیوی در سراسر جهان می‌باشد. هدف از انجام پژوهش حاضر، تعیین مناسب‌ترین غلظت سایتوکنین CPPU و اسید آمینه Amino Spark و زمان مناسب محلول‌پاشی بر افزایش کمیت و کیفیت میوه کیوی بود. این آزمایش به‌ صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با دو فاکتور در سه تکرار اجرا شد. فاکتور اول شامل سایتوکنین در دو غلظت، اسید آمینه در سه غلظت و شاهد، و فاکتور دوم شامل زمان محلول‌پاشی در اوایل هفته سوم و چهارم بعد از مرحله تمام گل بود. نتایج نشان داد که بیشترین وزن میوه با 6/121 گرم، ویتامین ث با 4/47 میلی‌گرم بر 100 گرم‌ وزن‌تر، سفتی بافت میوه با3/5 کیلوگرم بر سانتی‌مترمربع، فنول کل با 7/78 میلی‌گرم بر 100گرم وزن‌تر، فلاونوئیدکل با 8/13 میلی‌گرم بر 100 گرم وزن‌تر، ظرفیت آنتی‌اکسیدانی با2/82 درصد و فعالیت آنزیم کاتالاز با 2/9 واحد بر ‌گرم وزن تر در تیمار 3000 پی‌پی‌ام اسید آمینه در زمان محلول‌پاشی اوایل هفته چهارم بعد از تمام گل مشاهده شد. بیشترین فعالیت آنزیم سوپراکسیددیسموتاز، آسکوربات پراکسیداز، طول میوه و قطر میوه به ترتیب در تیمار 3000 پی‌پی‌ام اسید آمینه و 5/1 پی‌پی‌ام سایتوکنین به دست آمد. با توجه به نتایج تحقیق حاضر، محلول‌پاشی 3000 پی‌پی‌ام اسید آمینه و 5/1 پی‌پی‌ام سایتوکنین در اوایل هفته چهارم بعد از تمام گل در مقایسه با شاهد بر بیشتر صفات مورد مطالعه اثرات مثبت قابل توجهی نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of Foliar Application of Exogenous Cytokinin (CPPU) and Amino Acids on the Quantitative and Qualitative Characteristics of Kiwifruit (Actinidia deliciosa 'Hayward')

نویسندگان [English]

  • Sassan Boromand Lomer 1
  • Ebrahim Abedi Gheshlaghi 2
  • Farhang Razavi 3
  • Vali Rabiei 4
1 Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Horticulture Crops Research, Guilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran.
3 Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
4 Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
چکیده [English]

Increasing the yield and improving the quality of fruit with high weight is the main goal of kiwifruit producers over the world. The purpose of this research was to determine the most suitable concentration of cytokinin CPPU and Amino Spark amino acid and the appropriate foliar spraying time to increase the quantity and quality of kiwifruit. This experiment was carried out as a factorial in the form of a randomized complete block design with two factors in three replications. The first factor included cytokinin in two and amino acid in three concentrations and the control, and the second factor included the foliar spraying time in the beginning of the third and fourth weeks after full bloom. The results showed that the highest fruit weight with 121.6 g, vitamin C with 47.4 mg/100 g FW, firmness of fruit tissue with 5.3 kg/cm2, total phenol with 78.7 mg/100 g FW, total flavonoid with 13.8 mg/100 g FW, antioxidant capacity with 82.2% and catalase enzyme activity with 9.2 U/g FW were observed in the treatment of 3000 ppm of amino acid at the beginning of the fourth week spraying after full bloom. The highest activities of superoxide dismutase, ascorbate peroxidase, fruit length and fruit diameter were obtained in the treatment of 3000 ppm of amino acid and 1.5 ppm of cytokinin. According to the results, spraying by 3000 ppm amino acid and 1.5 ppm cytokine in at the beginning of the fourth week after full bloom showed significant positive effects on most of the studied traits compared to the control.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Agricultural stability
  • Firmness
  • Fruit weight
  • Vitamin C

Extended Abstract

Introduction

The widespread use of mineral fertilizers today has raised concerns regarding human health and environmental risks. Increasing awareness about the sustainable agricultural systems has led to a growing preference for natural compounds to enhance fruit growth and quality. The primary objective of kiwifruit production is to boost the fruit yield and quality, particularly in terms of weight. This research explores the impact of foliar application of exogenous cytokinin (CPPU) and amino acids on the quality and quantity characteristics of kiwifruit.

 

Material and Methods

The experiment followed a factorial design, employing a randomized complete block design with three replications and two factors. The first factor comprised two concentrations (0.75 and 1.5 ppm) of synthetic cytokinin forchlorfenuron (CPPU) with the brand name NERGOFEX, a product of DOGAL Turkey. Additionally, three concentrations (1000, 2000, and 3000 ppm) of powdered amino acid, commercially named "Amino Spark," were included, along with a control treatment sprayed with water. The foliar spraying occurred at the early of the third and fourth week after the full bloom stage. Measured traits included fruit size (length and width), fruit weight, fruit volume, titratable acid, fruit texture firmness, soluble solids (TSS), total flavonoids and phenols, vitamin C, antioxidant capacity, and antioxidant enzymes activity (superoxide dismutase, ascorbate peroxidase and catalase). Statistical analysis utilized analysis of variance (ANOVA) with SPSS software (version 20), and differences were assessed using Duncan's multiple range test at a significance level of 5%.

 

Results and Discussion

The analysis of variance revealed that all measured traits were significantly influenced by the simple effects of treatments (amino acids and cytokinin). Additionally, all measured traits, except fruit length, were significantly affected by the simple effects of foliar spraying times. Fruit weight, firmness, titratable acid, total flavonoid, catalase, and antioxidant capacity at the 5% level, and vitamin C and total phenol at the 1% level, were impacted by the interaction effects of treatments and spraying time. The treatments and interaction effects of exogenous cytokinin and amino acids foliar increased the quality of kiwifruit compared to the control. The highest fresh weight (121.6 g), firmness (5.3 kg/cm2), total phenols (78.7 mg 100 g-1 FW) and flavonoids (13.8 mg 100 g-1 FW), ascorbic acid (47.4 mg 100 g-1 FW), total antioxidant activity (82.2%), and catalase activity (9.2 U g-1 FW) were observed in the treatment of 3 g/l amino acids with foliar application in the beginning of fourth week after full bloom. The highest superoxide dismutase activity (76.2 and 72.9 U g -1 FW), ascorbate peroxidase activity (25.8 and 22.4 U g-1 FW), fruit length (66.1 and 65.8 mm), and fruit width (56.5 and 55.5 mm) were obtained with amino acid 3000 ppm and CPPU 1.5 ppm alone. Overall, the foliar application of 3000 ppm amino acid and 1.5 ppm CPPU, in the beginning of the fourth week after full bloom, had a more significant impact on the majority of traits compared to the control in Hayward kiwifruit.

 

Conclusion

Considering the lack of significant differences between 3000 ppm of amino acid and 1.5 ppm of cytokinin in most of the measured quantitative and qualitative traits, it seems that using of amino acids instead of cytokinin as natural and safe substances to increase the yield and quality of ‘Hayward’ kiwifruit cultivar can be a suitable solution to reduce the consumption of fertilizers and chemicals and environmental hazards.

آمارنامه کشاورزی (1402). آمارنامه کشاورزی محصول‌های باغبانی وزارت جهاد کشاورزی، معاونت برنامه‌ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، تهران، ایران. قابل دسترسی در آدرس: http://www.maj.ir
حسن­زاده، سکینه؛ امیری، محمد اسماعیل؛ نائینی محمدرضا و دلجو حافظعلی (1393). اثر محلول­پاشی کود آمینواسید دار بر عملکرد و کیفیت میوه انار رقم »نادری« در شرایط تنش کم آبی. علوم و فنون باغبانی، 15 (4)، 545-533.
عربلو، محمد؛ ایمانی, علی؛ رسولی, موسی؛  و شاهمرادی مسعود (1393). اثر محلول پاشی برگی با کلات کلسیم و اسیدهای آمینه بر وضعیت تغذیه ای، کلروفیل و سطح برگ سیب رقم گلدن دلیشز و گرانی اسمیت. دانش کشاورزی وتولید پایدار، 10، 2(2)، 52-43.
 
REFERENCES
Abd El-Rezak, E., & Saleh, M.S. (2012). Improve productivity and fruit quality of florida prince peach trees using foliar and soil applications of amino acids. Middle-East Journal of Scientific Research, 12(8), 1165-1172.
Abouelsaad, I., & Brengi, S. (2022). Effects of cytokinin types and concentrations on potato growth, yield, and quality under field conditions. Alexandria Science Exchange Journal, 495-502.
Agricultural statistics (2023), Agricultural statistics of horticultural products of the Ministry of Agricultural Jihad, Planning and Economic Deputy, Information and Communication Technology Center, Tehran, Iran. Available at: http://www.maj.ir (In Persian).
Ainalidou, A., Karamanoli, K., Menkissoglu-Spiroudi, U., Diamantidis, G., & Matsi, T. (2015). CPPU treatment and pollination, Their combined effect on kiwifruit growth and quality. Scientia Horticulturae, 193, 147-154.
Ali, S., Khan, A.S., & Malik, A.U. (2016). Postharvest L-cysteine application delayed pericarp browning, suppressed lipid peroxidation and maintained antioxidative activities of litchi fruit. Postharvest Biology and Technology, 121,135–142.
Ali, M.H., Khan, A.S., Jaskani, M.J., Anwar, R., Ali, S., Malik, As. U., Hasan, M.U., Rehman, R.N.U., & Ayyub, S. (2022). Pre-storage application of L-arginine mitigates chilling injury and maintains quality of Sandhuri guava fruit. Journal of Food Processing and Preservation, 46, 1640.
Almutairi, K.F., Saleh, A.A., Ali, M.M., Sas-Paszt, L., Abada, H.S., & Mosa, W.F.A. (2022). Growth performance of Guava trees after the exogenous application of amino acids glutamic acid, arginine, and glycine. Horticulturae, 8, 1110.
Amin, A., F. Gharib, El-Awadi, M., & Rashad, E. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129, 353-360.
Arabloo, M., Imani, A., Rasouli, M., & Shahmoradi, M. (2014). Foliar application of calcium chelated and amino acids on nutritional status, chlorophyll and leaf area surface of Golden Delicious and Granny Smith apple cultivars. Modern Science of Sustainable Agriculture Journal, 10, 2(2), 43-52. (In Persian).  Ardebili, Z. O., Moghadam, A. R. L., Ardebili, N. O., & Pashaie, A. R. (2012). The induced physiological changes by foliar application of amino acids in Aloe vera L. plants. Plant Omics, 5, 279–286.
Boras, M., Zidan R., & Halloum, W. (2011). Effect of amino acids on growth, production and quality of tomato in plastic greenhouses. Biological Sciences Series, 33(5), 229–238.
Chang, P.T. (2021). Effect of preharvest application of CPPU and perforated packaging on the postharvest quality of Red-Fleshed Pitaya (Hylocereus polyrhizus sp.) fruit. Horticulturae, 7, 253. https://doi.org/10.3390/horticulturae7080253.
Childerhouse, E. (2009). The effect of a natural plant extract and synthetic plant growth regulators on growth, quality and endogenous hormones of Actinidia chinensis and Actinidia deliciosa fruit. Massey Un. NewZealand, 1-161.
Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9),1214–1220. doi: 10.21273/HORTSCI12200-17
Cruz-Castillo, J. G., Baldicchi, A., Frioni, T., Marocchi, F., Moscatello, S., Proietti, S., & Famiani, F. (2014). Pre-anthesis CPPU low dosage application increases ‘Hayward’kiwifruit weight without affecting the other qualitative and nutritional characteristics. Food Chemistry, 158, 224-228.
Davies, P.J. (2004). Plant Hormones, Biosynthesis, Signal Transduction, Action, Springer, New York, NY, USA.
Dioha, I. J., Olugbemi, O., Onuegbu, T. U., & Shahru, Z. (2011). Determination of ascorbic acid content of some tropical fruits by iodometric titration. International Journal of Biological and Chemical Sciences, 5(5), 2180-2184.
El-Badawy, H. E. M. (2019). Effect of spraying amino acids and micronutrients as well as their combination on growth, yield, fruit quality and mineral content of Canino apricot trees. Journal of Plant Production. 10(2), 125–132.
El-Din, K. M. G., & El-Wahed, M. (2005). Effect of some amino acids on growth and essential oil content of chamomile Plant. International Journal of Agriculture and Biology, 3, 376-380.
Ezz, A., Thanaa, M., Mahmoud, G., El-Gawad, A., & Naghreesh, K. (2021). Effect of some growth regulators on productivity, fruit quality and storability of sugar apple. Natutal Volatiles and Essential Oils, 8(5), 12298-12316.
Faten, S. A., Shaheen, A. M., Ahmed, A. A., & Mahmoud, A. R. (2010). Effect of foliar application of amino acids as antioxidants on growth, yield, and characteristics of squash. Research Journal of Agriculture and Biological Science, 6(5), 583-588.
Cavusoglu, S., Sensoy, S., Karatas, A., Tekin, O., Islek, F., Yilmaz, N., Adamkova, A., & Mlcek, J. (2021). Effect of pre-harvest organic cytokinin application on the post-harvest physiology of pepper (Capsicum annuum L.). Sustainability, 13(15), 8258.
Gill, S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
Govindaraju, S., & Arulselvi, P.I. (2016). Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb - Coleus aromaticus Benth (L). Journal of the Saudi Society of Agricultural, 4, 45-51.
Habibi, F., & Ramezanian, A. (2017). Vacuum infiltration of putrescine enhances bioactive compounds and maintains quality of blood orange during cold storage. Food Chemistry, 227, 1–8.
Haghighi, M., Barzegar, A., & Abolghasem, R. (2022). Effect of exogenous amino acids application on the biochemical, antioxidant, and nutritional value of some leafy cabbage cultivars. Scientific Reports. 12, 177-185.
Hamid, A.A., Aiyelaagbe, O.O., Usman, L.A., Ameen, O.M., & Lawal, A. (2010). Antioxidants, Its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry. 4, 142–151.
Han, D. H., & C. H. Lee. (2004). The effects of GA3, CPPU and ABA applications on the quality of 'Kyoho' (Vitis vinifera L. x V. labruscana Bailey) grapes. Acta Horticulturea. 653, 193-197.
Hassanzade, S. Amiri, M. E., Naeini, M. R, & Deljou, H. (2015). Effect of spraying of fertilizer containing amino acids on yield and quality of pomegranate cultivar ‘Naderi’ under water deficit conditions. Journal of Horticultural Science and Technology, 15(4), 533-545. (In Persian)
Huang, H.W., Gong, J. J., Wang, S. M., He, Z. C., Zhang, Z. H. & Li, J. Q. (2000). Genetic diversity in the genus Actinidia. Chinese Biodiversity, 8, 1–12.
Iwahori, S., Tominaga, S., & Yamasaki, T. (1988). Stimulation of fruit growth of kiwifruit, Actinidia chinensis Planch, by N-(2-chloro-4-pyridyl)-N'- phenylurea, a diphenylurea-derivative cytokinin. Scientia Horticulturea, 35,1-2. 109-115. https://doi.org/10.1016/0304-4238(88)90042-8
Jia, H.J., Okamoto, G., & Hirano, K. (2000). Effect of amino acid composition on the taste of ‘Hakuho’ peaches (Prunus persica Batsch) grown under different fertilizer levels. Journal of the Japanese Society for Horticultural Science, 69, 135-140.
Ikeda, F., Ishikawa, K., Yazawa, S., & Baba, T. (2004). Induction of compact clusters with large seedless berries in the grape cultivar 'Fujiminori' by the use of streptomycin, gibberellins, and CPPU. Acta Horticulturea, 640, 361-368. https://doi.org/10.17660/ActaHortic.2004.640.43
Huang, Y.L., Yeh, P.Y., Shen, C.C., &Chen, C.C. (2003). Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica. Phytochemistry. 64(7), 1277-83. https://doi.org/10.1016/j.phytochem.2003.09.009. PMID: 14599526.
Kakkar, R. K., Nagar, P. K., Ahuja, P. S., & Rai, V. K. (2000). Polyamines and plant morphogenesis. Biologia Plantarum, 43(1), 1-11.  https://doi.org/10.1023/A:1026582308902
Kassem, H.A., Al-Obeed, R.S., Ahmed, M.A., & Omar, A.K.H. (2011). Productivity fruit quality and profitability of jujube trees improvement by preharvest application of Agro-chemical, Middle-East, journal of scientific research, 9(5),628-637. https://api.semanticscholar.org/CorpusID:111135241
Li, W., Herrera-Estrella, L., & Lam-Son, P.T. (2016). The Yin-Yang of cytokinin homeostasis and drought acclimation/adaptation. Trends in Plant Science, 21(7), 548-550. https://doi.org/10.1016/j.tplants.2016.05.006
Liu, F. H., & Longnecker, N. (2001). Interactive effect of cytokinin and potassium on sink-source relationships in Lupinus angustifolius, Plant Growth Regulation. 36(1), 1–6. http://dx.doi.org/10.1023/A:1014794015080
Liu, X., Luo, Y., Wang, S., Wang, H., Harpaz-Saad, X., & Huang, X. (2022). Residue analysis and the effect of preharvest forchlorfenuron (CPPU) application on on-tree quality maintenance of Ripe fruit in “Feizixiao” Litchi (Litchi chinensis Sonn.). Frontiers in Plant Science, 13, 14-23. https://doi.org/10.3389/fpls.2022.829635
Ma, T., Sun, X., Zhao, J., You, Y., Lei, Y., Gao, G., & Zhan, J. (2017). Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value. Food Chemistry, 218, 294–304. https://doi.org/10.1016/j.foodchem.2016.09.081
Mohseni, F., Pakkish, Z., & Panahi, B. (2017). Arginine impact on yield and fruit qualitative characteristics of strawberry. Agriculturae Conspectus Scientificus, 82(1), 19–26.
Nishiyama, I., Fukuda T., Shimohashi, A., & Oota, T. (2008). Sugar and organic acid composition in the fruit juice of different Actinidia varieties. Food Science and Technology Research, 14(1), 67–73. http://dx.doi.org/10.3136/fstr.14.67
Ogweno, J. O., Hu, W. H., Song, X. S., Shi, K., Mao, W. H., Zhou, Y. H., & Yu, J. Q. (2010). Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regulation, 60, 175-182.
Pakkish, Z., & Mohammadrezakhani, S. (2021). Quality characteristics and antioxidant activity of the mango (Mangifera indica) fruit under arginine treatment. Journal of Plant Physiology and Breeding, 11(1), 63–74.
Pan, Y.F., Chen, H.H., Li, X.H., Chen, H.Y., Wang, W. and Zhang, Y.Z. (2014). Effect of temperature on activities of cell wall enzymes of Kiwifruit during the shelf life. In Advanced Materials Research, (997, 150-153). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.997.150
Patterson, K. J., & Currie, M. B. (2010). Optimising kiwifruit vine performance for high productivity and superior fruit taste. Acta Horticulturea, 913, 257-268. https://doi.org/10.17660/ActaHortic.2011.913.33
Polo, J., & Mata, P. (2018). Evaluation of a biostimulant (pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering, and yield of gold cherry tomatoes grown under low stress ambient field conditions. Frontiers in Plant Science. 8, 2261. https://doi.org/10.3389/fpls.2017.02261
Publications Office of the European Union. (2004). Commission Regulation (EC) No 1673/2004 of 24 September 2004 Laying Down the Marketing Standard Applicable to Kiwifruit. In: The Publications Office of the European Union Luxembourg. https://doi.org/10.1093/jxb/eru315
Rennenberg, H., & Herschbach, C. (2014). A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses. Journal of Experimental Botany. 65(20), 5711–5724.
Ricci, A., Incerti, M., Rolli, E., Vicini, P., Morini, G., Comini, M., & Branca, C. (2006). Diheteroarylurea derivatives as adventitious rooting adjuvants in mung bean shoots and M26 apple rootstock. Plant Growth Regulation, 50, 201-209. http://dx.doi.org/10.1007/s10725-006-9119-1
Richardson, A. C., Marsh, K. B., Boldingh, H. L., Pickering, A. H., Bulley, S. M., Frearson, N. J. & Macrae, E. A. (2004). High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant, Cell & Environment, 27(4), 423-435. https://doi.org/10.1111/j.1365-3040.2003.01161.x
Sabaghnia, Z., & Nahavandi, F. (2017). Effects of Forchlorofenuron (CPPU) treatment on fruit properties in the fruit of common guava. Pobrane z czasopisma Annales C Biologia, LXXII (2), 7-14.
Sadak, M. S. H., Abdelhamid, M.T., & Schmidhalter, U. (2015). Effect of foliar application of amino acids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biológica Colombiana, 20(1), 140–152.
Shargal, A., Golobovich, S., Yablivich, Z., & Grafi, G. 2006. Synthetic cytokinins extend the phase of division of parenchyma cells in developing pear (Pyrus communis L.). Fruits. 81(5), 915–92. https://doi.org/10.1080/14620316.2006.11512159
Shehata, S. A., Gharib, A. A., Mohammad, M. El-Mogy, Abdel Gawad, K. F., & Emad A., Sh. (2011). Influence of compost, amino and humic acids on the growth and yield and chemical parameters of strawberries. Journal of Medicinal Plants Research, 5(11), 2304-2308.
Shu, P., Min, D., Ai, W., Li, J., Zhou, J., Li, Z., Zhang, X., Shi, Z., Sun, Y., & Jiang, Y. 2020. L-Arginine treatment attenuates postharvest decay and maintains quality of strawberry fruit by promoting nitric oxide synthase pathway. Postharvest Biology and Technology, 168, 111253. http://dx.doi.org/10.1016/j.postharvbio.2020.111253
Sogvar, O. B., Rabiei, V., Razavi, F., & Gohari, G. (2020). Phenylalanine alleviates postharvest chilling injury of plum fruit by modulating antioxidant system and enhancing the accumulation of phenolic compounds. Food Technology and Biotechnology. 58(4), 433-444. https://doi.org/10.17113/ftb.58.04.20.6717
Suwandi, T., Dewi, K., & Cahyono, P. (2016). Pineapple harvest index and fruit quality improvement by application of gibberellin and cytokinin. Fruits, 71(4), 209-214. http://dx.doi.org/10.1051/fruits/2016010
Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107(1), 282- 288. http://dx.doi.org/10.1016/j.foodchem.2007.08.015
Teixeira, W., Fagan, E., Soares, L., Umburanas, R., Reichardt, K., & Neto, D. (2017). Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in Plant Science, 8, 1-14.
Thakur, M., Raina, R., Sharma, A., Singh, K., & Kapoor, R. (2020). Effect of CPPU (Sitofex) on quality and yield in kiwi fruit. Journal of Krishi Vigyan. 9(1), 81-83. https://doi.org/10.5958/2349-4433.2020.00136.1
Vincill, E.D., Bieck, A.M., & Spalding, E.P. (2012). Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiology, 159(1), 40–46. https://doi.org/10.1104/pp.112.197509
Wang, H.J., Wu, L.H., Wang, M.Y., Zhu, Y.H., Tao, Q.N., & Zhang, F.S. (2007). Effects of amino acids replacing nitrate on growth, nitrate accumulation, and macroelement concentrations in pakchoi (Brassica chinensis L.). Pedosphere, 17: 595–600
Wang, J., Lv, M., He, H., Jiang, Y., Yang, J., & Ji, S. (2020). Glycine betaine alleviated peel browning in cold-stored ‘Nanguo' pears during shelf life by regulating phenylpropanoid and soluble sugar metabolisms. Scientia Horticulturae. 262, 109100. http://dx.doi.org/10.1016/j.scienta.2019.109100
White, A., De Silva, H. N., Requejo-Tapia, C., & Harker, F. R. (2005). Evaluation of softening characteristics of fruit from 14 species of Actinidia. Postharvest Biology and Technology, 35(2), 143-151. http://dx.doi.org/10.1016/j.postharvbio.2004.08.004
Wu, L., Lan, J., Xiang, X., Khan, S., & Liu, Y. (2020). Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). Plos One, 15(10), e0240355. https://doi.org/10.1371/journal.pone.0240355
Yagi, M., & Abdulkareem, S. (2006). Effects of exogenous arginine and uric acid on Eruca sativa Mill grown under saline conditions. Journal of Science and Technology, 7, 1–11.
Zhang, H., Wang, Y.Q., Deng, Q.X., Yang, Z.W., Pan, C.P., Chi, Z.H., Wen, L., & Yang, Y.M. (2021). Effects of Exogenous Trans-Zeatin and Lovastatin on Abortion of Small Seeds in ‘Dawuxing’ loquat (Eriobotrya Japonica Lindl.).
Zhang, C., & Whiting, M. D. (2011). Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Scientia Horticulturae, 127(3), 341-346. http://dx.doi.org/10.1016/j.scienta.2010.11.006
Zhang, Z., Huber, D. J., & Rao, J. (2013). Antioxidant systems of ripening avocado (Persea americana mill.) fruit following treatment at the pre climacteric   stage with  aqueous 1-methylcyclopropene.  Postharvest Biology Technology, 76,58–           64.https://doi.org/10.1016/j.postharvbio. 2012.09.003
Agriculture, 11(5), 409. https://doi.org/10.3390/agriculture11050409
Zheng, J.L., Hu, L.Y., Hu, K.D., Wu, J., Yang, F., & Zhang, H. (2016). Hydrogen sulfide alleviates senescence of fresh-cut apple by regulating antioxidant defense system and senescence-related gene expression. Hort Science. 51(2), 152–158. https://doi.org/10.21273/HORTSCI.51.2.152