نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 استاد، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

10.22059/ijhs.2020.296125.1759

چکیده

یکی از مهم‌ترین روش‌ها در برنامه‌های اصلاحی سبزی‌ها، گزینش والدین و نتاج برتر با هدف بهبود ژنتیکی صفات کمی و کیفی می‌باشد. به منظور بررسی ژنتیکی صفات کمی و کیفی لاین‌های گوجه‌فرنگی، تلاقی‌های نیم-دای آلل بین هشت لاین با اسامی C.JPS3، S.2274، H.1370، K.2274، S.L.، C20، Primoga و A13012 انجام شد. هیبریدهای حاصل و والدین، در قالب طرح بلوک‌های کامل تصادفی با سه تکرار کشت شدند. صفات شاخص شکل میوه، تعداد حفره میوه، شاخص سفتی میوه، درجه بریکس، اسیدیته قابل تیتر، pH آب میوه، تعداد خوشه  در بوته، تعداد گل در خوشه، تعداد میوه در هر بوته، متوسط وزن یک میوه و عملکرد اندازه‌گیری شدند. والد K.2274 دارای بالاترین ترکیب‌پذیری عمومی (GCA) در صفات عملکرد، تعداد میوه در بوته و شاخص سفتی میوه بود. بالاترین ترکیب‌پذیری خصوصی (SCA) برای صفت متوسط وزن میوه به ترتیب در دو تلاقی C20 x C.JPS3 و A13012 x K.2274 مشاهده شد. در میان والدین و هیبریدها، والد H.1370 و هیبرید Primoga × H.1370 بالاترین میزان عملکرد را داشتند. بالاترین درصد هتروزیس نسبی در صفات تعداد میوه در هر بوته، متوسط وزن یک میوه و عملکرد به ترتیب در تلاقی‌های A13012 × Primoga، C20 × C.JPS3 و Primoga × H.1370 مشاهده شد. نقش اثرات فوق غالبیت و غالبیت کامل در کنترل صفات عملکرد، تعداد میوه در بوته، اسیدیته قابل تیتر و بریکس بیش تر از اثر افزایشی بود. با این وجود، در کنترل صفت متوسط وزن میوه اثر افزایشی موثر بوده است.  

کلیدواژه‌ها

عنوان مقاله [English]

Half diallel analysis of related traits to yield and fruit quality in tomato lines

نویسندگان [English]

  • Somayyeh Nezami 1
  • Seyed Hosein Nemati 2
  • Hossein Aroiee 3
  • Mohammad Kafi 4

1 Ph.D. Candidate,, Faculty of Agriculture, Ferdowsi University of Mashhad, ‎Mashhad, Iran‎

2 Assistant Professor,, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran‎

3 Associate Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran‎

4 Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran‎

چکیده [English]

The selection of elite parents and hybrids could be used for the genetic improvement of quantitative and qualitative traits in breeding programs of vegetables. In order to genetic evaluation of quantitative and qualitative traits of tomato lines, half-diallel crosses were performed among eight lines C.JPS3, S.2274, H.1370, K.2274, S.L, C20, Primoga and A13012. The obtained hybrids along with parents were planted in a randomized complete block design with three replications. Traits including fruit shape index, no. of locules, fruit firmness index, brix, titrable acidity, pH of fruit juice, no. of inflorescence per plant, no. of flowers per inflorescence, no. of fruits per plant, average fruit weight and yield were measured. Parent K.2274 had the highest values of general combining ability (GCA) for the yield, number of fruits per plant and fruit firmness. The highest specific combining ability (SCA) was observed in C20xC.JPS3 and A13012xK.2274 cross for the average fruit weight, respectively. Among parents and hybrids, parent H.1370 and Primoga × H.1370 hybrid had the highest yield. The highest relative heterosis percentage for no. of fruits per plant, average fruit weight and yield were observed in A13012 × Primoga, C20 × C.JPS3, and Primoga × H.1370 crosses, respectively. Role of over-dominance and dominance effects were more than the additive effect in controlling of yield, no. of fruit per plant, titrable acidity, and brix. However, the additive effect was effective in the control of average fruit weight. 

کلیدواژه‌ها [English]

  • Dominance gene action
  • elite parent
  • heterosis
  • hybrid
  1. Andrade, M.C., Da Silva, A. A., Conrado, T. V., Maluf, W. R., Andrade, T. M. & De Oliveira, C. M. (2014). Combining ability of tomato lines in saladette-type hybrids. Bragantia, Campinas, 73 (3), 237-245.
  2. AOAC. (2000). Official method of analysis. (17th Ed.). Gaithersburg, MD, USA.
  3. Arshi, Y. (2000). Genetic improvment of vegetable crops. Jahad-e Daneshgahi Mashhad Publications, (In Farsi).
  4. Backer, J. (1978). Issues in diallel analysis. Crop Science, 18, 533-536.
  5. Bayat, H., Neamati, S. H., Bagheri, A., Tehranifar, A. & Saei, M. (2013). Heterosis and combining ability for ornamental traits in petunia (Petunia hybrida) inbred lines. Seed and Plant Improvement Journal, 29 (1), 159- 177. (In Farsi).
  6. Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32 (1), 89-170.
  7. Birchler, J. A. (2014). Heterosis in plants. Encyclopedia of Agriculture and Food Systems, 3, 539-543.
  8. Blank, A. F., Santa Rosa, Y. R., de Carvalho Filho, J. L. S., dos Santos, C. A., Arrigoni-Blank, M. F., Niculau, E. S. & Alves, P. B. (2012). A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum). Industrial Crops & Products, 38, 93– 98.
  9. Biswas, V. R., Bhatt, R. P. & Kumar, N. (2011). Gene action in tomato (Lycopersicon esculentum Mill) under open and protected environments. Vegetable Science, 38(2), 206-208.
  10. Chattopadhyay, A., Dutta, S., Dutta, P. & Hazra, P. (2011). Studies on heterobeltiosis, combining ability and gene action in tomato (Solanum lycopersicum). International Journal of Plant Breeding, 5(2), 88-93.
  11. Chishti, S. A. S., Khan, A. A., Sadia, B. & Khan, I. A. (2008). Analysis of combining ability for yield, yield components and quality characters in tomato (Lycopersicon esculentum). Journal of Agricultural Research, 46(4), 325-332.
  12. Chowdhry, M.A., Rafiq, M. & Alam, K. (1992). Genetic architecture of grain yield and certain other traits in bread wheat. Pakistan Journal of Agricultural Research, 13, 216–220.
  13. Diez, M.J. & Nuez, F. (2008). Tomato. In: Prohens, J., Nuez, F. (Eds.), Handbook of Plant Breeding, Vegetables II. (pp. 249–323) Springer.
  14. El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum) cultivars. Scientia Horticulturae, 167, 153-157.
  15. Ememi, S. (2018). Development and evaluation of F1 tomato hybrids for quantitative traits, qualitative traits and tolerance to thermal stresses. Ph.D. Thesis, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (in Farsi).
  16. Ememi, S., Nemati, S. H., Azizi, M. & Mobli, M. (2016). Combining ability and gene action of some tomato genotypes under low light condition. Advances in Horticultural Science, 32 (4), 459-470.
  17. Fan, M.X., Chen, M.H., Tan, J., Xu, X.C., Zhang, D.Y., Luo, M.L., Huang, X.Y. & Kang, S.M. (2008). Combing abilities for yield and yield components in maize. A Journal Devoted to Maize and Allied Species, 53, 39-46.
  18. Farzane, A., Nemati, S.H., Arouiee, H., Mirshamsi Kakhki, A. & Vahdati, N. (2012). The estimate of combining ability and heterosis for yield and yield components in tomato (Lycopersicon esculentum). Journal of Biological and Environmental Science, 6 (17), 129-134.
  19. Garg, N. & Cheema, D. S. (2011). Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions. Scientia Horticulturae, 131, 29–38.
  20. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Science, 9, 463-493.
  21. Hajiali, A., Darvishzadeh, R., Zahedi, B. & Abbaskohpayegani, J. (2017). Exploring genetic diversity of some Iranian watermelon (Citrullus vulgaris) accessions in Urmia climatic conditions. The Plant Production (Scientific Journal of Agriculture), 40 (1), 29-41. (In Farsi).
  22. Hannan, M.M., Ahmed, M.B., Razvy, M.A., Karim, R., Khatun, M., Haydar, A., Hossain, M. & Roy, U.K. (2007). Heterosis and correlation of yield and yield components in tomato (Lycopersicon esculentum). American Eurasian Journal of Science and Research, 2 (2), 146-150.
  23. Hayman, B. I. (1954). The theory and analysis of diallel cross-I. Genetics, 32, 789-809.
  24. Ihaka, R. & Gentleman, (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299-314.
  25. Jinks, J. L. (1954). The analysis of continuous variation in a diallel crosses of Nicotiana rustica Genetics, 39, 767-788.
  26. Kumar, S. & Gowda, P. H. (2016). Estimation of heterosis and combining ability in tomato for fruit shelf life and yield component traits using line x tester method. International Journal of Agronomy and Agricultural Research, 9 (3), 10-19.
  27. Martinez-Vazquez, E. D. I. A., Hernandez-Bautista, A., Lobato-Ortiz, R., García-Zavala, J. J. & Reyes-Lopez, D. (2017). Exploring the breeding potential of Mexican tomato landraces. Scientia Horticulturae, 220, 317-325.
  28. Nadeem, K., Munawar, M. & Chishti, S.A.S. (2013). Genetic architecture and association of fruit yield and quality traits in tomato (Solanum lycopersicum). Universal Journal of Agricultural Research, 1(4), 155-159.
  29. Pujer, P. & Badiger, M. (2017). Heterosis and potence ratios for growth, earliness, yield and quality traits in cherry tomato (Solanum lycopersicum var. Cerasiforme Mill). International Journal of Chemical Studies, 5 (4), 1000-1006.
  30. Rahaei, J., Hamidoghli, Y. & Rabiei, B. (2017). Evaluation of gene effects and heritability of quantitative traits in tomato through generation mean analysis. Iranian Journal of Horticultural Science and Technology, 17 (4), 423-438. (In Farsi).
  31. Rathod, V. (2016). Combining ability studies in tomato. Green Farming, 7 (1), 26-30.
  32. Roff, D.A. & Emerson, K. (2006). Epistasis and dominance: evidence for differential effects in life-history versus morphological traits. Journal of Evolution, 60, 1981-1990.
  33. Roy, D. (2000). Plant Breeding Analysis and Exploitation of Variation. LTP, Alpha Science Internation. 701p.
  34. Saeed, A., Nadeem, H., Amir, S., Muhammad, F. S., Nazar, H. K., Khurram, Z., Arif, R., Khan, M. & Nadeem, S. (2014). Genetic analysis to find suitable parents for development of tomato hybrids. Life Science Journal, 11(12s), 30-35.
  35. Sekhar, L., Prakash, B. G., Salimath, P. M., Channayya, P., Hiremath Sridevi, O. & Patil, A. A. (2010). Implications of heterosis and combining ability among productive single cross hybrids in tomato. Electronic Journal of Plant Breeding, 1(4), 706-711.
  36. Shaffer, J. G. & Srivastav, S. K. (2009). A simple technique for constructing optimal complete diallel cross designs. Statistics & Probability Letters, 79, 1181-1185.
  37. Shah-Mansouri, E. (2011). Potentials and problems of seed production of onion F1 hybrid in Iran. Second National Seed Technology Conference, 25-26 Oct., Islamic Azad University of Mashhad, Mashhad, Iran, pp.  295-299.
  38. Shalaby, T. A. (2013). Mode of gene action, heterosis and inbreeding depression for yield and its components in tomato (Solanum lycopersicum). Scientia Horticulturae, 164, 540-543.
  39. Shankar, A., Reddy, R. V. S. K., Sujatha, M. & Pratap, M. (2013). Combining ability analysis to identify superior F1 hybrids for yield and quality improvement in tomato (Solanum lycopersicum). Agrotechnology, 2(3), 1-4.
  40. Smith, H.H. (1952). Fixing transgressive vigour in Nicotiana rustica. In: Heterosis. (pp. 198-224.) Iowa State College Press, USA.
  41. Soleiman, T. H. I. (2009). Diallel analysis of five tomato cultivars and estimation of some genetic parameters for growth and yield characters. Alexandria Science Exchange Journal, 30 (2), 274-288.
  42. Solieman, T.H.I., El-Gabryb, M.A.H. & Abidob, A.I. (2013). Heterosis, potence ratio and correlation of some important characters in tomato (Solanum lycopersicum). Scientia Horticulturae, 150, 25-30.
  43. Tay, D. (2002). Vegetable hybrid seed production. Seeds: Tra. Prod. & Tech. In: Proceedings of International Seed Seminar: Trade, Production and Technology, 15-16 Oct., Santiago University, Santiago, Chile, pp. 128-139.