اثر کاربرد قارچ تریکودرما (‏Trichoderma harzianum‏) بر خصوصیات بیوشیمیایی و رنگیزه‌های ‏فتوسنتزی گیاه ریحان تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به منظور ارزیابی اثر کاربرد قارچ تریکودرما در شرایط تنش خشکی بر خصوصیات بیوشیمیایی و رنگیزه­های فتوسنتزی گیاه ریحان آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار اجرا شد. عامل اول آبیاری در سه سطح (50، 75 و 100 درصد ظرفیت زراعی) و عامل دوم تلقیح با قارچ تریکودرما در دو سطح (تلقیح و عدم تلقیح با قارچ تریکودرما ) بودند. نتایج نشان داد بیشترین وزن ‏تر و خشک برگ در تیمار آبیاری 100 درصد ظرفیت زراعی بدون کاربرد قارچ تریکودرما (شاهد) مشاهده شد. میزان وزن تر (69/17 درصد) و خشک ساقه (27/17 درصد)، کلروفیل a (66/0 درصد)، کلروفیل b (64/0 درصد)، کلروفیل کل (66/0 درصد) و محتوای نسبی آب برگ (37/1 درصد) در تیمار آبیاری 100 درصد ظرفیت زراعی همراه با کاربرد قارچ تریکودرما نسبت به شاهد افزایش یافت. میزان نشت الکترولیت (5/7 درصد) در تیمار آبیاری 100 درصد ظرفیت زراعی همراه با کاربرد قارچ تریکودرما نسبت به شاهد کاهش یافت. میزان کارتنوئید (74/31 درصد) پرولین (25/52 درصد)، فعالیت آنتی­اکسیدانتی (22/17 درصد) در تیمار آبیاری 50 درصد ظرفیت زراعی همراه با کاربرد قارچ تریکودرما بیشتر از شاهد مشاهده شد. بنا به نتایج بدست آمده، در شرایط سطوح مختلف آبیاری، کاربرد قارچ Trichoderma harzianum باعث افزایش پرولین، کربوهیدرات محلول، رنگیزه‌های فتوسنتزی و فعالیت آنتی‌اکسیدانتی ریحان شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Trichoderma harzianum on the biochemical properties and ‎photosynthetic pigments of basil under drought stress ‎

نویسندگان [English]

  • Mojtaa Salahiostad 1
  • Bahram Abedi 2
  • Yahya Selahvarzi 2
1 M. Sc. Student, Ferdowsi University of Mashhad, Mashhad, Iran‎
2 Assistant Professor, Ferdowsi University of Mashhad, Mashhad, Iran‎
چکیده [English]

To evaluate the effect of Trichoderma application under drought stress conditions on biochemical properties and photosynthetic pigments of basil, an experiment was conducted in a completely randomized design with three replications. The studied treatments included 3 levels of irrigation (50, 75, and 100 Percent of field capacity) as the first factor and inoculation with Trichoderma (concentration 108) and non-inoculation with Trichoderma as the second factor. The results showed that the highest fresh and dry weight of leaves was observed in the treatment of irrigation area of 100 Percent of field capacity without the use of Trichoderma (control). Wet weight (17.69 Percent) and dry stem (17.27 Percent), chlorophyll a (0.66 Percent), chlorophyll b (0.64 Percent), total chlorophyll (0.66 Percent), proline(52/25 Percent) and the relative content of leaf water (1.37 Percent) in the irrigation level treatment of 100 Percent of field capacity along with the application of Trichoderma increased compared to the control and the amount of electrolyte leakage (7.5 Percent) in the treatment of 100 Percent of field capacity Decreased with the use of Trichoderma compared to the control.. The amount of carotenoids (31.74 Percent) and antioxidant activity (17.22 Percent) in the irrigation surface treatment of 50 Percent of field capacity with the use of Trichoderma were observed more than the control. According to the results, the application of Trichoderma harzianum increased proline, soluble carbohydrates, photosynthetic pigments, and antioxidant activity of the plant under different irrigation levels.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • chlorophyll
  • electrolyte leakage
  • proline‎
  1. Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D. & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6(868), 1-15.
  2. Altomare, C., Norvell, W. A., Björkman, T. & Harman, G. E. (1999). Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma harzianum Rifai. Applied and Environmental Microbiology, 65 (7), 2926-2933.
  3. Alwhibi, M. S., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., Soliman, D. W. K., Wirth, S. & Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16(8), 1751-1757.
  4. Amiri Deh Ahmadi, S. R., Rezvani Moghaddam, P. & Ehyaee, H. R. (2012). The effects of drought stress on morphological traits and yield of three medicinal plants (Coriandrum sativum, Foeniculum vulgare and Anethum graveolens) in greenhouse conditions. Iranian Journal of Field Crops Research, 10(1), 116-124. (In Farsi).
  5. Arnon, D. I. (1989). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
  6. Asadollahi, A., Abbaszadeh, B., Mirza, M. & Layegh Haghighi, M. (2012). Comparison of the percentage of essential oil of different air organs of basil Ocimum basilicum population of Isfahan population under drought stress conditions. In: Proceedings of 6th National Conference on New Ideas in Agriculture, 29 Feb., Khorasgan Islamic Azad University, Khorasgan, Iran pp. 669-672. (In Farsi).
  7. Bae, H., Sicher, R. C., Kim, M. S., Kim, S. H., Strem, M. D., Melnick, R. L. & Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatumisolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacaoJournal of Experimental Botany, 60(11), 3279-3295.
  8. Bates, L. S., Waldern, R. P. & Tear, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
  9. Bolarín, M. C., Santa-Cruz, A., Cayuela, E. & Pérez-Alfocea, F. (1995). Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. Journal of Plant Physiology, 147, 463-468.
  10. Contreras-Cornejo, H. A., Macías-Rodríguez, L., Alfaro-Cuevas, R. & López-Bucio, J. (2014). Trichoderma Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates. Molecular Plant-Microbe Interactions, 27(6), 503‐514.
  11. Costa Franca, M. G., Thi, A. T. P., Pimentel, C., Rossiello, R. O. P., Zuilly-Fodil, Y. & Laffray, D. (2000). Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environmental and Experimental Botany, 43(3), 227-237.
  12. Dehghani-satij, H. & Nakhjavani-moghadam, M. (2007). Application of water consumption efficiency index and yield function in determining cultivation pattern with the aim of increasing consumption efficiency. In: Proceedings of 2nd Water Resources Management Conference, 23 Jan., Isfahan University of Technology, Isfahan, Iran, pp. 247-256. (In Farsi).
  13. Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: A submolecular approach. Agriculture, Ecosystems and Environment, 106, 119-133.
  14. Gravel, V., Antoun, H. & Tweddell, R.J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, 39, 1968-1977.
  15. Guler, N. S., Pehlivan, N., Karaoglu, S. A., Guzel, S. & Bozdeveci, A. (2016). Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiologiae Plantarum, 38, 132.
  16. Gupta, R., singh, A., Kanaujia, R. & Kushwaha, S. (2016). Trichoderma harzianum ThU and Its Metabolites Underscore Alteration in Essential Oils of Ocimum basilicum and Ocimum sanctum. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 219-227.
  17. Harman, G. E. (2006). Overview of Mechanisms and Uses of Trichoderma Phytopathology, 96(2), 190-194.
  18. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews, 2, 43-56.
  19. Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A. & Egamberdieva, D. (2014). Alleviation of abiotic salt stress in Ochradenus baccatus by Trichoderma hamatum. Journal of Plant Interactions, 9(1), 857-868.
  20. Hoekstra, F. A., Golovina, E. A. & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431‐438.
  21. Irannezhad, A., Vatanpour Azghandi, A., Rahnama, H., Jaliani, N. & Bozorgipour, R. (2010). Improvement of rooting and aclimatization of tissue cultured plantlets of olive (Olea europaea cv. Zard) by Agrobacterium rhizogenes. Seed and Plant Production Journal, 26(1), 85-93. (In Farsi).
  22. Karimi, S., Zahedi, B. & Mumivand, H. (2020). Evaluation of some morpho-physiological traits of four basil ‎‎(Ocimum basilicum L.) cultivars under water stress conditions. Iranian Journal of Horticultural Science, 51(1), 245-253. (In Farsi).
  23. Li, H. S. (2000). Principles and techniques of plant physiology and biochemistry experiments (1th ed.). Higher Education Press, Beijing.
  24. Lopez-Mondejar, R., Bernal-Vicente, A., Ros, M., Tittarelli, F., Canali, S., Intrigiolo, F. & Pascual, J. A. (2010). Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo seedling production. Bioresource Technology, 101, 3718-3723.
  25. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398.
  26. Mastouri, F., Björkman, T. & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100, 1213-1221.
  27. Mastouri, F., Björkman, T. & Harman, G. E. (2012). Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant-Microbe Interactions, 25(9), 1264-1271.
  28. Mazhabi, M., Nemati, H., Rouhani, H., Tehranifar, A., Moghadam, E. M., Kaveh, H. & Rezaee, A. (2011). The effect of Trichoderma on polianthes qualitative and quantitative properties. Journal of Animal and Plant Sciences, 21(3), 617-621.
  29. Mehrabi-Koushki, M., Rouhani, H. & Mahdikhani-Moghaddam, E. (2012). Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots. Current Microbiology, 65, 524-533.
  30. Moghadam, M., Alirezaei Noghondar, M., Selahvarzi, Y. & Goldani, M. (2015). The effect of drought stress on some morphological and physicochemical characteristics of three cultivars of basil (Ocimum basilicum L.). Iranian Journal of Horticultural Science, 46(3), 507-521. (In Farsi).
  31. Monajjem, S., Ahmadi, A. & Mohammadi, V. (2011). Effect of drought stress on photosynthesis, partitioning of photo- assimilates and grain yield in rapeseed cultivars. Iranian Journal of Crop Sciences, 13(3), 533-547. (In Farsi).
  32. Naiji, M. & Souri, M.K. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Journal of Hortorum Cultus, 17(2), 167-175.
  33. Nzanza, B., Diana, M., & Puffy, S. (2011). Tomato (Solanum lycopersicum) seedling growth and development as influenced by Trichoderma harzianum and arbuscular mycorrhizal fungi. African Journal of Microbiology Research, 5, 425-443.
  34. Omidbeygi, R. (2006). Approaches to the production and production of medicinal plants. Astan Quds Razavi Publisher. (In Farsi).
  35. Osiewacz, H. D. (2002). Molecular biology of fungal development. Marcel Dekker. New York.
  36. Qi, W. & Zhao, L. (2012). Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 52, 1-10.
  37. Rasouli, D. & Fakheri, B. (2016). Effects of drought stress on quantitative and qualitative yield, physiological characteristics and essential oil of Ocimum basilicum and Ocimum americanum L. Iranian Journal of Medicinal and Aromatic Plants Research, 32(5), 900-914. (In Farsi).
  38. Rawat, L., Bisht, T. S., Kukreti, A. & Prasad, M. (2016). Bioprospecting drought tolerant Trichoderma harzianum isolates promote growth and delay the onset of drought responses in wheat (Triticum aestivum). Molecular Soil Biology, 7(4), 1-15.
  39. Razavizadeh, R., Shafeghat, M. & Najafi, S. (2015). Effect of water deficit on morphological and physiological parameters of Carum copticum. Iranian Journal of Plant Biology, 6(22), 25-38. (In Farsi).
  40. Repas, T. S., Gillis, D. M., Boubakir, Z., Bao, X., Samuels, G. J. & Kaminskyj, S. G. W. (2017). Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PLOS One, 12(10), 1-15.
  41. Ritchie, S. W. & Nguyen, H. T. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111.
  42. Saboora, A., Barik Roo, N. & Sharifi, H. (2016). Changes in compatible osmolite contents in four wheat cultivars under water stress. Applied Biology, 29(1), 121-142. (In Farsi).
  43. Salari, E., Rouhani, H., Mahdikhani Moghaddam, E., Saberi Riseh, R. & Mehrabi Koushki, (2014). Efficacy of two methods “seed coating” and “soil application” of Trichoderma on growth parameters of tomato plant. Journal of Plant Protection, 28(4), 500-507. (In Farsi).
  44. Scandalios, J. G. (1993). Oxygen stress and superoxide dismutase. Plant Physiology, 101,7-12.
  45. Shahsavari, A., Pirdashti, H., Mottaghian, A. & Tajick Ghanbary, M. A. (2010). Response of growth characters and yield of wheat (Triticum aestivum) to co-inoculation of farmyard manure, Trichoderma spp. and Psudomunas spp. Agroecology, 2(3), 448-458. (In Farsi).
  46. Shukla, N., Awasthi, R.P., Rawat, L. & Kumar, J. (2012). Biochemical and physiological responses of rice (Oryza sativa) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88.
  47. Shukla, N., Awasthi, R. P., Rawat, L. & Kumar, J. (2015). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of Applied Biology, 166(2), 171-182.
  48. Singh, D. P., Singh, V., Gupta, V. K., Shukla, R., Prabha, R., Sarma, B. K. & Patel, J. S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports, 10, 4818.
  49. Singh, S. P. & Singh H. B. (2015). Effect of mixture of Trichoderma isolates on biochemical parameter in tomato fruits against Sclerotinia sclerotiorum rot of tomato plant. Journal of Environmental Biology, 36(1), 267-272.
  50. Singh, V., Singh, P. N., Yadav, R. L., Awasthi, S. K., Joshi, B. B., Singh, R. K., Lal, R. J. & Duttamajumder, S. K. (2010). Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry, 2(4), 66-71.
  51. Souri, M.K., Sooraki, F.Y. & Moghadamyar, M. (2017). Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Horticultue Environment and Biotechnology, 58(6), 530-536.
  52. Souri, M.K. (2016). Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, 1, 118-123.
  53. Souri, M.K. & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 26.
  54. Souri, M.K. and Hatamian, M. (2019). Aminochelates in plant nutrition; a review. Journal of Plant Nutrition, 42 (1), 67-78.
  55. Taghavi-ghasemkhili, F., Pirdashti, H., Bahmanyar, M. A. & Tajik-ghanbari, M. A. (2011). The effect of Trichoderma (Trichoderma harzianum) on vegetative traits of barley due to irrigation with cadmium-contaminated water. In: 5th Specialized Conference on Environmental Engineering, 21 Nov., University of Tehran, Iran. (In Farsi).
  56. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Wooa, S. L. & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40, 1-10.
  57. Yao, X., Zhang, D., Zu, Y., Fu, Y., Luo, M., Gu, C., Li, C. M. F. & Efferth, T. (2013). Free radical scavenging capability, antioxidant activity and chemical constituents of Pyrola incarnata Fisch Leaves. Industrial Crops and Products, 49, 247-255.
  58. Yedidia, I., Srivastava, A. K., Kapulnik, Y. & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235(2), 235-242.
  59. Zekavati, H., Mansouri, N. & Fatemi, S. (2021). Effect of Trichoderma harzianum fungus on the physiology traits and some ‎vegetative and reproductive characteristics of tuberose (Polianthes tuberose cv. ‎Double) under drought stress conditions. Iranian Journal of Horticultural Science, 51(4), 1017-1026. (In Farsi).