ارزیابی تنوع فنوتیپی ژنوتیپ‌های گوجه‌فرنگی بر پایه صفات مورفولوژیکی، فیزیکو شیمیایی و توصیفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی باغبانی و فضای سبز، دانشکده کشاورزی، د انشگاه تهران، کرج، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی دانشگاه تهران، کرج، ایران

چکیده

این پژوهش با هدف ارزیابی تنوع فنوتیپی بر پایه صفات مورفولوژیکی، فیزیکو شیمیایی و توصیفی در ۳۹ ژنوتیپ گوجه‌فرنگی (Solanum lycopersicum L.) انجام شد. مواد گیاهی مورد استفاده شامل طیفی از ژنوتیپ‌های بومی و تجاری بود که به‌منظور شناسایی ویژگی‌های ارزشمند برای اصلاح و توسعه کشت مورد بررسی قرار گرفتند. آزمایش در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در شرایط مزرعه‌ای اجرا گردید. صفات مورد ارزیابی شامل ویژگی‌های مورفولوژیکی (مانند شکل، حجم و اندازه میوه)، فیزیکی (سفتی، چگالی، وزن)، شیمیایی (pH، اسیدیته، TSS و نسبت TSS/TA) و نیز صفات توصیفی نظیر رنگ، ضخامت پریکارپ، مغز و تعداد حجره بود. نتایج حاصل از تجزیه واریانس و آزمون چنددامنه‌ای دانکن نشان‌دهنده تفاوت معنی‌دار بین ژنوتیپ‌ها در سطح احتمال یک درصد بود. صفاتی مانند وزن کل میوه در بوته، تعداد میوه، سفتی بافت و نسبت TSS/TA بیشترین تنوع را در میان ژنوتیپ ها نشان دادند. به‌منظور شناسایی الگوهای گروه‌بندی ژنوتیپ‌ها، تجزیه خوشه‌ای با روش وارد نیز انجام گرفت و   TN-1100  در گروهی مجزا قرار گرفت و باقی ژنوتیپ‌ها نیز در دو گروه عمده ژنوتیپی دسته بندی شدند. بیشترین فاصله مورفولوژیکی در میان ژنوتیپ ممقان و TN-1100  مشاهده شد. یافته‌های این تحقیق می‌تواند به‌عنوان مبنایی مؤثر در انتخاب والدین مناسب برای برنامه‌های به‌نژادی گوجه فرنگی با اهداف ارتقای عملکرد، کیفیت میوه و توسعه ارقام سازگار با نیازهای مختلف تولیدی و بازار مصرف مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Phenotypic Diversity in Tomato Genotypes Based on Morphological, Physical, Chemical, and Descriptive Traits

نویسندگان [English]

  • Noushin Ashrafi 1
  • Mohammadreza Hassandokht 1
  • Majid Shokrpour 2
1 Depart,ment of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Tehran, Karaj- Iran
2 Depart,ment of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Tehran, Karaj- Iran
چکیده [English]

This study was conducted to evaluate the phenotypic diversity among 39 tomato genotypes (Solanum lycopersicum L.). The plant materials included a range of both local and commercial cultivars that were examined to identify valuable traits for breeding and crop improvement. The experiment was carried out under field conditions using a randomized complete block design (RCBD) with three replications. The evaluated traits encompassed morphological characteristics (such as fruit shape and size), physical attributes (firmness and density), chemical properties (pH, titratable acidity, TSS, and TSS/TA ratio), as well as descriptive traits such as fruit color, pericarp thickness, and number of locules. The results of analysis of variance and Duncan’s multiple range test revealed significant differences among genotypes at the 1% probability level. Traits such as total fruit weight per plant, number of fruits, fruit firmness, and TSS/TA ratio showed the greatest variation among the genotypes. To identify phenotypic clustering patterns, hierarchical cluster analysis using Ward’s method was also performed, resulting in distinct genotype groupings. The findings of this study can serve as a valuable basis for selecting superior parental lines of tomato in breeding programs aimed at enhancing yield, fruit quality, and developing cultivars adapted to various production goals and market demands.

کلیدواژه‌ها [English]

  • Cluster analysis
  • Local genotypes
  • yield

Extended Abstract

Introduction

     Tomato is one of the most important horticultural crops worldwide due to its high nutritional value and wide applicability in the food industry. As a self-pollinated, day-neutral plant cultivated extensively in tropical and temperate regions, tomato holds significant potential in breeding programs thanks to its broad genetic diversity. Morphological, physical, and chemical traits such as fruit weight, firmness, color, flavor, and nutritional composition directly influence market value and product quality. In the context of growing population, limited agricultural land, and increasing demand for higher-quality produce, the development of improved tomato cultivars requires a focus beyond yield alone. In this regard, precise characterization and evaluation of phenotypic diversity among genotypes are essential steps toward selecting superior parental lines and advancing cultivar development. Genetic diversity is commonly analyzed through morphological, biochemical, or molecular markers, which provide insight into genotype performance under diverse production and market conditions. Morphological characterization, in particular, remains a foundational and widely used method for identifying genetic differences, often involving field trials and detailed trait evaluation. Systematic phenotypic assessments not only contribute to understanding population structure but also guide targeted breeding decisions. Continued research in this field is critical for optimizing selection strategies, enhancing fruit quality, and meeting the evolving needs of both producers and consumers.

 

Materials and Method

 This study was conducted as a field experiment under open-field conditions from 2018 to 2021. A total of 62 tomato seed samples were collected from various sources, including local, commercial cultivars, and gene bank accessions originating from Sarab, Razliq, Mamaghan, and Tabas regions (Iran). In 2021, 39 genotypes were selected for final evaluation. The genotypes were cultivated based on a randomized complete block design (RCBD) with three replications. Each plot contained 20 plants arranged in two rows, with 50 cm spacing between plants on the row. Evaluations included morphological traits (fruit color, length and width, pericarp and locule thickness, longitudinal and cross-sectional shape, tip shape, and blossom-end depth and bulging), physical traits (fruit volume, density, firmness, mean and total weight of 10 fruits, average fruit weight and fruit number per plant), and chemical traits (pH, total soluble solids [TSS], titratable acidity [TA], and TSS/TA ratio). TSS was measured using a refractometer. TA was determined by titration with 0.1N NaOH in the presence of phenolphthalein as an indicator. Fruit firmness was assessed using a handheld penetrometer, pH was measured with a digital pH meter, and fruit density was calculated by dividing the fruit's weight by its volume, which was determined through water displacement. All data were recorded at the physiological maturity stage on a per-plant basis.

 

Results and Discussion

 The results of this study revealed significant genetic diversity among the tomato genotypes in terms of physical, chemical, and mechanical traits. This diversity can play an important role in breeding programs and in selecting suitable cultivars for specific purposes. The Mamaqan genotype showed high values in all three color components (*L, *a, *b), indicating a bright red to yellowish hue. Additionally, genotype TN-957 exhibited superior redness compared to others. Among mechanical characteristics, genotypes like King Stone, due to their desirable firmness, are recommended for transportation. Genotypes such as Cuor Di Bue, TN-941, and Super Urbana, because of their higher fruit weight and volume, are more suitable for fresh consumption, while TN-906, with its higher fruit yield per plant, is ideal for improving field productivity. Chemical traits such as acidity, total soluble solids (TSS), and the TSS/TA ratio have a significant impact on taste, shelf life, and market acceptance. Genotypes like TN-944 and Aghmiyon have a well-balanced flavor and are ideal for fresh consumption, while genotypes such as Super Urbana and Super Major, due to their higher acidity and lower TSS, are more appropriate for processing products like tomato paste. In terms of morphology, genotypes with larger size and appropriate skin thickness, like Cour di Boe and TN-1089, are considered more marketable. In contrast, smaller genotypes such as Torsh Riz-e-Tabas or TN-941 are better suited for specific cultivation purposes. Furthermore, the number of locules in a tomato fruit can significantly affect the internal tissue quality and its suitability for processing. Overall, the high phenotypic diversity observed in this germplasm highlights its valuable potential for breeding, production, and commercial applications.

Conclusions

     The results of this study indicate a remarkable genetic diversity among the evaluated tomato genotypes in terms of morphological, physical, and chemical characteristics. The wide variations observed in these traits suggest a high potential for targeted selection in breeding programs. Some genotypes, with features such as firmness, desirable color, good yield, or marketable appearance, are suitable for various production pathways. Moreover, traits like acidity, soluble solids, and the TSS/TA ratio play significant roles in the quality and shelf life of the product. The combination of these traits can facilitate the selection of optimal genotypes for specific applications. The observed diversity highlights that identifying and utilizing these genotypes can lead to improved quality, increased yield, and the development of products tailored to market demands.

 

Author Contributions

  1. Hassandokht and M. Shokrpour conceived and planned the experiments. N. Ashrafi carried out the experiments. M. Shokrpour and N. Ashrafi analyzed data. N. Ashrafi and MR. Hassandokht wrote the first manuscript. MR. Hassandokht and M. Shokrpour contributed to the interpretation of the results. All authors provided critical feedback and helped shape the research, analysis and manuscript.

 

Data Availability Statement

Data available on request from the authors.

 

Acknowledgements

The authors would like to thank the research council of the University of Tehran, Iran for the financial support of this research.

 

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

 

Conflict of interest

The author declares no conflict of interest.

 

منابع

الفتی چیرانی، جمالعلی؛ بابالار، مصباح؛ کاشی، عبدالکریم؛ یزدانی، حسین و داداش‌پور، احمد (۱۳۸۷). اثر سطوح مختلف آمونیوم و مولیبدن بر تجمع نیترات در دو رقم خیار گلخانه ای. پژوهش و سازندگی در زراعت و باغبانی، (۸۱)، ۱۷۵–۱۸۰.
امینی، زهره؛ حسینی، سید ماشالله؛ علی‌محمدی، مهناز؛ سی‌سختی، علی و اسکندری، علی (۱۳۹۲). سازگاری ارقام گوجه‌فرنگی با طول دوره رویشی کوتاه و تعیین تاریخ کاشت مناسب در منطقه سردسیر شمال استان فارس. فصلنامه اکو-فیزیولوژی گیاهی، ۵(۱۳)، ۲۷–۳۸.
خزاعی، هادی و زارع فیض آبادی، احمد (1392). بررسی عملکرد و کیفیت میوه گوجه فرنگی در برداشت دستی یک و چند مرحله ای. مجله به زراعی نهال و بذر (نهال و بذر)، 29-2(2)، 235-249.
رضوی، وحیده؛ خندان، عاطفه و صادقی، لیلا (۱۳۹۵). ارزیابی صفات مورفولوژیکی به‌منظور بررسی تمایز، یکنواختی و پایداری (DUS) در ۲۶ رقم گوجه‌فرنگی. گزارش طرح پژوهشی، مؤسسه تحقیقات ثبت و گواهی بذر و نهال، کرج، ایران. شماره طرح: R- 1053545.
شیری، محمدعلی (۱۳۹۴). مطالعه کارآیی زمان محلول‌پاشی کلسیم بر کیفیت و انبارمانی میوه کیوی (Actinidia deliciosa)  رقم «هایوارد». رساله دکتری تخصصی. به راهنمایی محمود قاسم نژاد. گیلان: دانشگاه گیلان. دانشکده کشاورزی.
فرزانه، اکرم، نعمتی، سید حسین، آروئی، حسین و میرشمس کاخکی، امین (۱۳۹۲). تجزیه ژنتیکی صفات مرتبط با عملکرد و زودرسی در ۹ لاین گوجه‌فرنگی (Lycopersicon esculentum Mill.) با استفاده از تلاقی دی‌آلل. به نژادی نهال و بذر، ۲۹(۴)، ۷۱۰–۶۹۳.
گل‌چشمه، ساسان؛ کیانی، غفار؛ کاظمی‌تبار، سید کمال و نواب‌پور، سعید (۱۴۰۱). بررسی تنوع مورفولوژیکی و ارزیابی عملکرد لاین‌های گوجه‌فرنگی با استفاده از تجزیه آماری چندمتغیره. نشریه علوم باغبانی، ۳۶(۲)، ۴۱۵–۴۲۷.
محسنی‌فرد، احسان؛ فارسی، محمد؛ نعمتی، حسین و ملک‌زاده، خلیل (۱۳۹۰). ارزیابی تنوع ژنتیکی 16 لاین گوجه‌فرنگی (Lycopersicon esculentum) با استفاده از نشانگر مولکولی SSR و بررسی همبستگی آن با هتروزیس. مجله علوم باغبانی ایران، ۴۲(۲)، ۱۸۵–۱۹۲.
مسیب زاده، عزیزه؛ مستوفی، یونس؛ جوان نیکخواه، محمد و امام جمعه، زهرا (1388). بررسی تغییرات بیوشیمیایی و پوسیدگی خاکستری در انگور رقم شاهرودی در شرایط بسته بندی با اتمسفر تعدیل یافته، نشریه علوم باغبانی، 23(2)، 77-68.
RERERENCES
Agong, S. G., Schittenhelm, S., & Friedt, W. (2001). Genotypic variation of Kenyan tomato (Lycopersicon esculentum L.) germplasm. The Journal of Food Technology in Africa 6(1): 13-17. https://doi.org/10.4314/jfta.v6i1.19277.
Alves, F .R .R., Lira, B. S., Pikart, F. C., Monteiro, S. S., Furlan, C. M., Purgatto, E., Pascoal, G. B., Cristina-da-SilvaAndrade, S., Demarco, D., Rossi, M., & Freschi, L. (2020). Beyond the limits of photoperception: constitutively active phytochrome B2 overexpression as a means of improving fruit nutritional quality in tomato. Plant Biotechnology Journal. 18. 2027–2041. https://doi.org/10.1111/pbi.13362
Amini, Z., Hosseini, S. M., Ali-Mohammadi, M., Sisakhti, A., & Eskandari A. (2013). Adaptability of tomato cultivars with short growing period and determination of suitable planting date in northern cold region of Fars province. Journal of Plant Ecophysiology 5(13): 27-38. (In Persian)
Bhattarai, S., Adhikari, P., Subedi, P., & Singh, S. (2018). Morphological characterization and diversity analysis of tomato genotypes (Solanum lycopersicum L.) grown in Nepal. International Journal of Agronomy, 2018, Article ID 9539340. https://doi.org/10.1155/2018/9539340
Farzaneh, A., Nemati, H., Arouiee, H., & Mirshamsi Kakhki, A. (2013). Genetic analysis of traits associated with yield and earliness in nine tomato (Lycopersicon esculentum Mill.) lines using diallel crossing method. Seed and Plant Journal, 29(4), 693-710. (In Persian).
Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 2007, 64358. https://doi.org/10.1155/2007/64358
GolCheshmeh, S., Kiani, G., KazemiTabar, S. K., & Navabpour, S. (2022). Investigation of morphological diversity and evaluation of tomato lines yield using multivariate statistical analysis. Journal of Horticultural Science 36(2): 415-427. (In Persian) DOI: 10.22067/JHS.2021.70173.1048
Hannan, M. M., Ahmed, M. B., Roy, U. K., Razvy, M. A., Haydar, A., Rahman, M. A., Islam, M. A., & Islam, R. (2007). Heterosis, combining ability and genetics for Brix%, days to first fruit ripening and yield in tomato (Lycopersicon esculentum Mill.). Middle-East Journal of Scientific Research 2(3): 128-131.
Hassan ,Z., Ul-Allah, S., Khan, A. A., Shahzad, U., Khurshid, M., Bakhsh, A., Amin, H., Jahan, M. S., Rehim, A., & Manzoor, Z. (2021). Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLoS One 16(6): 1-12. https://doi.org/10.1371/journal.pone.0253557.
Khazaei, H., & Zare-Feyzabadi, A. (2013). Assessment of fruit yield and quality of tomato varieties in one and several times hand-harvesting. Seed and Plant Production 2(29): 235-249. (In Persian).
Kumar, R., Srivastava, K., Somappa, J., Kumar, S. & Singh, R. K. (2012). Heterosis for yield and yield components in tomato (Lycopersicon esculentum Mill.). Electronic Journal of Plant Breeding 3(2):800-8005.
Kumar, V., et al. (2018). Morphological and biochemical characterization of tomato genotypes. Scientia Horticulturae, 232, 179-187. https://doi.org/10.1016/j.scienta.2017.12.008
Kumari, S., & Sharma, M. (2011). Exploitation of heterosis for yield and its contributing traits in tomato, (Solanum lycopersicum L.). International  Journal of  Farm Science 1(2):45-55.
Liu, W., Liu, K., Chen, D., Zhang, Z., Li, B., El-Mogy, M. M., Tian, S., & Chen, T. (2022). Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods, 11(16), 2402. https://doi.org/10.3390/foods11162402
Lone, S., Hussain, K., Malik, A., Masoodi, Kh. Z., Dar, Z., Nazir, N., Zahed, Z., & Ali, G. (2022). Combining ability studies in cherry tomato for yield and yield attributing traits in open and protected conditions. The Pharma Innovation Journal, 11(3), 782-793.
McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254–1255.
Mirshamsi, A., Farsi, M., Shahriari, F., and Nemati, H. (2008). Use of random amplified polymorphic DNA markers to estimate heterosis and combining ability in tomato hybrids. Pakistan Journal of Biological Sciences, 11: 499-507.
Mohsenifard, E., Farsi, M., Nemati, H & Malekzade, K. (2011). An SSR-based assessment of genetic diversity in 16 Tomato (Lycopersicon esculentum) lines and it’s correlation with heterosis. Iranian Journal of Horticultural Science 42(2): 185-192. (In Persian).
Mosaibzadeh, A., Mostofi, Y., Javan-Nikkhah, M., & Emamjomeh, Z. (2008). Investigation of biochemical changes and gray mold decay in 'Shahroodi' grape under modified atmosphere packaging conditions. Journal of Horticultural Sciences, 23(2), 68–77. (In Persian). https://doi.org/.10.22067/jhorts4.v1388i2.2588
Oladokun, O. L., Ibirinde, D. O., Kolawole, A. O., & Aremu, C. O. (2022). Combining ability for morphological and nutritional traits in a diallel cross of tomato (Solanum lycopersicum L.). Acta Agriculturae Slovenica, 118(4), 1–10. https://doi.org/10.14720/aas.2022.118.4.2234
Olfati Chirani, J., Babalar, M., Kashi, A., Yazdani, H., & Dadashpour, A. (2008). The effect of different levels of ammonium and molybdenum on nitrate accumulation in two greenhouse cucumber cultivars. Pajouhesh va Sazandegi in Agriculture and Horticulture, (81), 175–180. (In Persian).
Pandiarana, N., Chattopadhyay, A., Seth, T., Shende, V. D., Dutta, S., & Hazra, P. (2015). Heterobeltiosis, potence ratio and genetic control of processing quality and disease severity traits in tomato. New Zealand Journal of Crop and Horticultural Science, 43(4), 282-293. https://doi.org/10.1080/01140671.2015.1083039.
Panthee, D. R., Bhattarai, K., Louws, F. J., & Williamson, J. D. (2016). Diversity analysis of tomato genotypes based on morphological traits with commercial breeding significance for fresh market production in eastern USA. Australian Journal of Crop Science, 10(8), 1098–1103. https://doi.org/10.21475/ajcs.2016.10.08.p7391
Razavi, V., Khandan, A., & Sadegi, L. (2016). Evaluation of morphological traits for distinctness, uniformity, and stability (DUS) of 26 tomato cultivars. Research Project, Seed and Plant Certification and Registration Research Institute, Karaj, Iran. Project no. 4-08-08-92126. (In Persian).
Gupta, A., Kawatra, A., & Sehgal, S. (2011). Physical-chemical properties and nutritional evaluation of newly developed tomato genotypes. African Journal of Food Science and Technology, 2(7), 167-172. http://www.interesjournals.org/AJFST
Salim, M. M. R., Rashid, M. H., Hossain, M. M., & Zakaria, M. (2020). Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. Journal of Saudi Society of Agricultural Sciences, 19, 233– 240. https://doi.org/10.1016/j.jssas.2018.11.001
Senapati, B. K., & Kumar, A. (2015). Genetic assessment of some phenotypic variants of rice (Oryza spp.) for some quantitative characters under the Gangatic plains of West Bengal. African Journal of Biotechnology, 14(3), 187-201.https://doi.org/10.5897/AJB2014.13961
Shankara, N., Joep, V. D. J., Marja, D. G., Martin, H., & Barbara, V. D. (2005). Cultivation of Tomato: Production Processing and Marketing. Agromisa Foundation, Agrodok 17, Agromisa/CTA, Wageningen, The Netherlands. pp: 63-64. https://hdl.handle.net/10568/52975.
Shiri, M. A. (2015). Study of the efficiency of calcium spraying time on quality and storage life of kiwifruit (Actinidia deliciosa) cultivar ‘Hayward’ [Master’s thesis]. Ministry of Science, Research and Technology - University of Guilan - Faculty of Agriculture. (In Persian).
Singh, P., Cheema, D. S., Dhaliwal, M. S., & Garg, N. (2014). Heterosis and combining ability for earliness, plant growth, yield and fruit attributes in hot pepper (Capsicum annuum L.) involving genetic and cytoplasmicgenetic male sterile lines. Scientia Horticulture. 168, 175-188. https://doi.org/10.1016/j.scienta.2013.12.031.
Solieman, T. H. I., El-Gabry, M. A. H., & Abido, A. I. (2013). Heterosis, potence ratio and correlation of some important characters in tomato (Solanum lycopersicum L.). Scientia Horticulturae 150(2013): 25-30.
Sprague, G. F., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn 1. Agronomy Journal, 34(10), 923-932. https://doi.org/10.2134/agronj1942.00021 962003400100008x
Suárez, M. H., Rodríguez, E. R., & Romero, C. D. (2008). Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chemistry, 106(3), 1046–1056. https://doi.org/10.1016/j.foodchem.2007.07.025
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845