مطالعه واکنش دفاعی برخی از ارقام انگور (Vitis vinifera L.) به تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسنده

مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج

10.22059/ijhs.2023.352980.2078

چکیده

پژوهش حاضر با هدف بررسی برخی مکانیسم‌های تدافعی انگور تحت تنش خشکی، در 7 رقم ایرانی، شامل چفته، سبز انگور، سیاه انگور، عسگری، قلاتی، کج انگور و یک رقم خارجی سوپریور با درجات متفاوت تحمل به خشکی، اجرا شد. آزمایش بصورت گلدانی و بر پایه طرح کاملاً تصادفی با دوسطح آبیاری خشکی و شاهد در سه تکرار برای هر رقم انجام شد و نتایج با آزمون تی مورد تجزیه و تحلیل قرار گرفت. ابتدا در یک آزمایش مقدماتی خشکی تدریجی و خشکی یکباره روی رقم عسگری (رقم شاخص منطقه) مورد بررسی قرارگرفت. نتایج نشان داد که خشکی تدریجی باعث کاهش محتوای نشاسته، محتوای نسبی آب و پتانسیل آب (w) برگ شده، در حالی‌که محتوای ساکاروز، فروکتوز، پرولین و آنتی­اکسیدانت کل را افزایش می‌دهد، به‌طوری‌که محتوای پرولین برگ از 16 به 34 و محتوای ساکاروز برگ از 18 به 70 میکرو مول بر گرم وزن تر افزایش معنی­دار داشتند. با توجه به نتایج، آزمایش بصورت تنش تدریجی روی ارقام مورد مطالعه انجام شد. ارقام مختلف، تحت تنش خشکی الگوی متنوعی از تغییرات پرولین و نسبت قند محلول به نشاسته نشان دادند، در ارقام ’سبز انگور‛، کج انگور، قلاتی و سیاه انگور تفاوت معنی­داری در محتوای پرولین بین شاهد و خشکی مشاهده گردید، در سیاه انگور، محتوای پرولین از 15 به حدود 50 میکرو مول بر گرم وزن تر افزایش معنی­دار داشت. در رقم چفته همزمان با افزایش نسبت قند محلول به نشاسته، بیان ژن ساکاروز فسفات سنتتاز (ژن کلیدی بیوسنتز ساکاروز) نیز افزایش یافت. این نتایج نقش متابولیسم آنتی‌اکسیدانت‌ها، پرولین و قندهای محلول خصوصاً ساکاروز و کنترل ژنتیکی آن را در واکنش دفاعی انگور به خشکی اثبات می­کند که احتمالاً در ارقام انگور متحمل به خشکی قوی­تر عمل می­کنند. ارقام چفته، سیاه انگور، سبز انگور، ، قلاتی و کج انگور تحمل نسبتاً بالاتری به خشکی نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The study of defensive responses to drought stress in some grape cultivars (Vitis vinifera L.)

نویسنده [English]

  • Farzaneh RAZAVI
Horticultural Science Research Institute (HSRI), Agricultural Research, Education and Extention Organization (AREEO), Shahrekord, Iran.
چکیده [English]

This study, aimed to investigate the defensive mechanisms of grape tress under water stress in 7 Iranian grape cultivars, including: 'Rajabi', 'Chafteh', 'Sabzangoor', 'Siahangoor' ('Sorkhak'), 'Asgari', 'Ghalati', 'Kajangor' and one foreign cultivar named 'Superior'. A pot experiment was performed based on a complete randomized design with two level of irrigation, including control and drought, in tree replication, and data were analyzed by t- test. In a preliminary experiment, both sudden and gradual droughts were applied on 'asgari', a local prominent cultivar. The gradual drought caused a decrease in leaf relative water content, starch and water potential content and an increase in the contents of sucrose, fructose, proline and total antioxidants, so that proline content increased significantly from 16 to 34 µmolg100-1gFWand and sucrose content from 18 to 70 µmolg100-1gFW. Based on these results the experiment was continued by gradual drought method. Cultivars, in response to drought stress, showed variation in proline content and the ratio of soluble carbohydrat to starch content. A great difference was observed in proline content between control and drought treatments in 'Siahangoor', 'Sabzangoor', 'Kajangoor', and 'Ghalati' cultivars, so that in 'Siahangoor' the proline content was significantly increased from 15 to 50 µmolg100-1gFW. Chafteh as a drought-tolerant cultivar, showed a significant increase in the soluble sugar/starch content, along with an increase in the expression level of SPS (Sucrose Phosphate Synthesis) gene, under drought stress. These results verify the role of antioxidants, proline and sucros metabolisms especially the genetic role of the later in defensive responses of grape under drought stress, which likely act stronger in drough -tolerant grape cultivars.
In overall, 'Siahangoor', 'Sabzangoor', 'Kajangoor', 'Ghalati' and 'Chafteh' showed relatively higher tolerance to dronught compared to other cultivars.

کلیدواژه‌ها [English]

  • Defensive mechanism
  • Drought signalling
  • Drought tolerance
  • Grapevine
  • Water shortage

Extended Abstract

Introduction

    Recently, global climate changes accompanied by water shortage are prominent challenges in agricultural sectors in worldwide and Iran. food is mostly produced in areas with limited rainfall during growing season or in lands with limited stored moisture soils. The identification, selection and development of drought tolerant lines and cultivars are crucial steps to prevent negative drought effects on production of fruits like grape (Vitis vinifera L.). So, fruit trees breeding programs should be focused on release of genotypes with the potential of drought tolerance and rain-fed products. To attain this point, biological mechanisms in response to drought stress should be understood. This study presented useful and informative tools for identifying drought-tolerant grape lines and cultivars.  

Material and Methods

    A pot experiment was performed based on a completely randomized design (CRD) to investigate and compare the effect of drought stress on 8 selected grape cultivars, including 'Rajabi', 'Chafteh', 'Sabzangoor', 'Siahangoor', 'Sorkhak', 'Asgari', 'Ghalati‘, 'Kajangor' and 'Superior'. Two levels of irrigation, including control (100% FC) and drought (20% FC), were applied, in three replications, and data were analyzed by t- test for each cultivar. In a preliminary experiment, both sudden and gradual droughts were applied on 'asgari', a prominent local cultivar, and based on the results, the experiment was continued by gradual method. 

Results and Discussion    

’Asgari‘, as an index cultivar showed that under gradual drought stress, from 10th to 30th days after water stress settlement, leaf water potential was significantly decreased. There was also a significant difference in starch, fructose, sucrose and proline content between the control and drought-stressed plants. Drought stress resulted in a decrease in leaf water potential and starch content, whereas an increase in sucrose and proline content and total antioxidant capacity were observed. A significant increase was also occurred in leaf sucrose content under drought stress compared to control. Under severe water shortage i.e., 30 days after drought settlement (the end point of the gradual drought period), a significant increase was occurred in total antioxidant content in 'Asgari'. Besides, a great difference in proline content was observed between control and drought in 'Siahangoor', 'Sabzangoor', 'Kajangoor', and 'Ghalati'. Likewise, the ratio of soluble sugar to stored sugar (starch) was variable between different grape cultivars under the drought stress. Gene expression analysis of SPS (Sucrose Phosphate Synthesis) under drought stress showed an increase in 'Chafteh', as a drought-tolerant cultivar.  

Conclusion

    Taking together, grape response to drought stress can be considered as a genetic-dependent phenotype that is different among cultivars. Results also indicate proline and sugar metabolisms are critically involved in key grape’s defensive responses to drought stress. It can be concluded that drought-tolerant cultivars might have stronger and faster sugar and proline responses under drought stress compared to the sensitive ones, or such strong defensive mechanisms may not exist in sensitive grape cultivars.

اسدی، وهب؛ رسولی، موسی؛ غلامی، منصور و ملکی، معصومه (1396). بررسی برخی ویژگی­های ریخت­شناختی و فیزیولوژیک چهار رقم انگور (Vitis vinifera L.) در شرایط تنش خشکی. نشریه علوم باغبانی ایران (علوم کشاوری ایران)، 48 (4)، 977-990.
اسدی، وهب؛ غلامی، منصور؛ رسولی، موسی و ملکی، معصومه (1398). اثر تنش خشکی بر برخی ویژگی­های فیزیولوژیکی سه رقم انگور (.Vitis vinifera L). تولید فرآوری محصولات زراعی و باغی، 9 (3)، 45-59.
 آمارنامه وزارت جهاد کشاورزی (1398). انتشارات وزارت جهاد کشاورزی.
بحرانی، پگاه؛ عبادی، علی؛ زمانی، ذبیح­اله و فتاحی مقدم، محمدرضا (1399). تأثیر سطوح مختلف خشکی در برخی صفات مورفولوژیک و فیزیولوژیک به‌منظور انتخاب متحمل‌ترین پایه انگور. پژوهش‌های تولید گیاهی، 27 (1)، 41-56.
حسابی اصفهانی، پرویز (1379). تأثیر سطوح مختلف تنش خشکی و آب خاک بر رشد برخی از رقم انگور (Vitis vinifera. L.)، (پایان­نامه کارشناسی ارشد. دانشگاه تبریز، تبریز).
خندانی، یاسر؛ غلامی، منصور؛ ساریخانی، حسن و چهرگانی راد، عبدالکریم (1401). عکس­العمل برخی ویژگی­های رویشی و فیزیولوژیک ارقام انگور ایرانی و خارجی به تنش خشکی. فصلنامه فرآیند و کارکرد گیاهی، 11 (6)، 153-174.
ربیعی، ولی (1383). پاسخ فیزیولوژیکی و مورفولوژیکی برخی ارقام انگور به تنش آبی. (رساله دکتری، دانشگاه تهران، تهران).
رسولی، ولی­اله و گل­محمدی، مجید (1388). ارزیابی تحمل به تنش خشکی ارقام انگور استان قزوین. نهال و بذر، 25 (2)، 359-349.
رضوی، فرزانه (1399). ارزیابی پتانسیل کشت دیم برخی از ارقام انگور در استان چهارمحال و بختیاری. گزارش نهایی پروژه تحقیقاتی خاص، شماره فروست: 59055، مرکز فناوری اطلاعات و اطلاع­رسانی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، وزارت جهاد کشاورزی، تهران، ایران، 80 صفحه.
سوخت­سرایی، رضا؛ عبادی، علی؛ سلامی، سیدعلیرضا و حاجی احمد، پریسا (1398). پاسخ فیزیولوژی و بیوشیمیایی نهال سه رقم انگور بیدانه سفید، یاقوتی و چفته به تنش خشکی. پژوهش­های تولید گیاهی (علوم کشاورزی و منابع طبیعی)، 26(2)، 1-13.
عزیزی، حسین؛ جلیلی مرندی، رسول؛ حسنی، عباس و دولتی بانه، حامد (12 تا 15 تیر، 1388). تأثیر تنش خشکی بر برخی خصوصیات مورفولوژیکی و فیزیولوژیکی سه رقم انگور. مجموعه مقالات ششمین کنگره علوم باغبانی ایران. دانشگاه گیلان، رشت، ایران.
فهیم، سمیه؛ قنبری، علیرضا؛ ناجی، امیرمحمد؛ شکوهیان، علی اکبر و ملکی لجایر، حسن (1401). تأثیر تنش خشکی روی صفات مورفولوژیکی و فیزیولوژیکی در برخی ارقام انگور ایرانی. فرآیند و کارکرد گیاهی، 11(47)، 249-266.  
قادری، ناصر (1388). تأثیر تنش آبی بر برخی خصوصیات فیزیولوژیکی پنج رقم انگور و ارزیابی تنوع ژنتیکی آن­ها در استان کردستان. (رساله دکتری، دانشگاه تهران، تهران).
مهری، حمیدرضا؛ قبادی، سیروس؛ بانی­نسب، بهرام؛ احسان­زاده، پرویز و غلامی، مهدیه (1393). بررسی برخی پاسخ­های فیزیولوژیکی و مرفولوژیکی چهار رقم انگور ایرانی به تنش خشکی در شرایط درون شیشه­ای. فرایند و کارکرد گیاهی، 3 (10)، 115-125.
REFERENCES
Acevedo-Opazo, C., Ortega–Farias, S., & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97, 956-964. http://dx.doi.org/10.1016/j.agwat.2010.01.025
Statistics of the Ministry of Agricultural Jihad (2018). Publications of the Ministry of Agricultural Jihad. (In Persian).
Aebi, H. (1974). Methods of Enzymatic Analysis. Academic Press, New York.
Alsina, M. M., Smart, D. R., Bauerle, T., de Herralde, F., Biel, C., Stockert, C., Negron, C., & Save, R. (2011). Seasonal changes of whole root system conductance by a drought tolerant grape root system. Journal of Experimental Botany, 62, 99-109. http://dx.doi.org/10.1093/jxb/erq247
Anderson, C. M., & Kohorn, B. D. (2001). Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars. Journal of Plant Physiology, 158, 1215-1219.
Asadi, W., Rasouli, M., Gholami, M., & Maleki, M. (2018). Study of some morphological and physiological traits of four grape varieties (Vitis vinifera L.) under water stress. Iranian Journal of Horticultural Science. 48(4), 977-990. (In Persian) https://doi.org/10.22059/ijhs.2017.237072.1279
Asadi, W., Gholami, M., Rasouli, M., & Maleki, M., (2019). Effect of drought stress on some physiological traits in three varieties of grapes (Vitis vinifera L.). Isfahan University of Technology-Journal of Crop Production and Processing, 9(3), 45-59. (In Persian) http://dx.doi.org/10.47176/jcpp.9.3.24642
Azizi, H., Jalilimarandi, R., Hasani, A., & Dolati Bane, H. (2009). Effect of drought stress on some morphological and physiological characters of three grapevine cultivar. In Proceedings of 6th Iranian Horticultural Science Congress. (pp. 527). University of Guilan, Rasht, Iran. (In Persian).
Bahrani, P., Ebadi, A., Zamani, Z., & Fatahi Moghadam M.R. (2020). Effects of drought stress levels on some morphological and physiological traits of grape to select the most tolerant ones as a rootstock (2020). Journal of Plant Production. 27, 41-56. (In Persian). https://doi.org/10.22069/jopp.2020.15230.2369  
Bates L. S. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
Chaplin M. F., & Kenedy J. F. (1994). Carbohydrate analysis: A practical approach. No: 143, Oxford University Press BPS, 2nd ed, 344p.
De Keyser E., De Riek J., & Van Bockstaele E. (2009). Discovery of species-wide EST-derived markers in Rhododendron by intron-flanking primer design. Mol Breed, 23, 171-178. http://dx.doi.org/10.1007/s11032-008-9212-4
Doulati Baneh, H., Ahmadali, J., & Rasouli, M. (2019). Effects of drought stress on some morphophysiological traits of some Iranian and foreign commercial grape varieties. Research in Pomology, 4(2), 127-142.
Efeoğlu, B., Ekmekçi, Y., & Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75, 34-42. http://dx.doi.org/10.1016/j.sajb.2008.06.005
Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A., & Maleki Lajayer, H. (2023). Impact of drought stress on morphological and physiological traits in some Iranian grape cultivars. Plant Process and Function, 11 (47), 249-266. http://jispp.iut.ac.ir/article-1-1556-fa.html (In Persian).
Ferreya, E. R., Selles G., Ruiz S. R., & Selles, M. I. (2003). Efecto del estres hidrico aplicado en distintos periodos de desarrollo de la vid cv. Chardonnay en la produccion Y calidad Del vino. Agricultura Tecnica (Chile), 63, 277-286. http://dx.doi.org/10.4067/S0365-28072003000300007
Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71, 4658–4676. https://doi.org/10.1093/jxb/eraa245
Ghaderi, N. T., Talaei, A., Ebadi, A., & Lesani, H. (2011). Physiological response of three Iranian grape cultivars to increasing drought stress. Journal of Agricultural Science and Technology, 13(4), 601-610. http://dorl.net/dor/20.1001.1.16807073.2011.13.4.4.3
Ghaderi, N. (2009). Effect of water stress on some physiological characters of five grapevine cultivars and evaluation of genetic diversity of them in Kurdistan province. [Doctoral dissertation, Faculty of Horticulture. University of Tehran, Iran]. (In Persian).
Guo, S., Xu, T., Ju, Y., & Yulu Lei, Y., et al. (2023). MicroRNAs behave differently to drought stress in drought-tolerant and drought-sensitive grape genotypes. Environmental and Experimental Botany, 207. https://doi.org/10.1016/j.envexpbot.2023.105223
Hadadinejad, M., Ebadi, A., Fatahi, R., Mousavi, A., Santesteban, L.G., & Nejatian, M.A. (2014). The effect of drought stress on photosynthetic traits and the expression of some genes for a few Iranian grapevine candidate rootstocks. The proceeding of ISHS Acta Horticulture, 1045, VI International Phylloxera symposium, DOI: 10.17660/ActaHortic.2014.1045.17.
Hellemans J., Mortier G., De Paepe A., Speleman F., & Vandesompele J. (2007). qBase relative quantification framework and software for management and automated analysis of realtime quantitative PCR data. Genome Biology, 8, R19. doi 10.1186/gb-2007-8-2-r19.
Hesabi Esfahlan, P. (2000). Effect of different level of drought stress and soil water on some grapevine (Vitis vinifera. L.) cultivars growth, [M.Sc. Thesis. Faculty of Agriculture, Tabriz University, Iran]. (In Persian)
Jiang, J., Liu, X., Liu, C., Liu, G., Li, S., & Wang, L.  (2017). Integrating omics and alternative splicing reveals insights into grape response to high temperature. Plant Physiology, 173, 1502-1518. https://doi.org/10.1104/pp.16.01305
Jiang, Q., Jian, H., & Chenyang, H. (2011). The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 11, 49-61. http://dx.doi.org/10.1007/s10142-010-0188-x
Khandani, Y., Gholami, M., Sarikhani, H., & Chehregani Rad, A. (2022). Response of some vegetative and physiological traits of Iranian and foreign grape cultivars to drought stress. Plant Process and Function, 11 (51), 153-174.  http://jispp.iut.ac.ir/article-1-1661-fa.html. (In Persian).
Koc, E., İslek, C., & Üstun, A. S. (2010). Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi University Journal of Science, 23, 1-6.
Lovisolo, C., Perrone, I., Carra, A., Ferrandino, A., Flexas, J., Medrano, H., & Schubert, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level, a physiological and molecular update. Functional Plant Biology, 37, 98-116. http://dx.doi.org/10.1071/FP09191
McCarthy, M. G. (1997). The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 3, 102-108. https://doi.org/10.1111/J.1755-0238.1997.TB00128.X
Mehri, H., Ghobadi, C., Baninasab, B., Ehsanzadeh, P. & Gholami, M. (2015). Evaluation of some physiological and morphological responses of four Iranian grapevine (Vitis vinifera L.) cultivars to drought stress under in vitro conditions. Journal of Plant Process and Function, 3 (10), 115-126. (In Persian). http://dorl.net/dor/20.1001.1.23222727.1393.3.10.11.0 
Mirás-Avalos, J. M.,  & Intrigliolo, D. S. (2017). Grape composition under abiotic constrains: Water stress and salinity. Frontiers in Plant Science, 8(851), 1-8. https://doi.org/10.3389/fpls.2017.00851
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
Pagliarani, C., Vitali, M., Ferrero, M., Vitulo, N., Incarbone, M.,  Lovisolo, C., Valle G., & Schubert, A. (2017). The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiology, 173(4), 2180-2195. https://doi.org/10.1104/pp.16.01119
Rabiei, V. (2004). Physiological and morphological response of some grapevine cultivars to water stress. [Doctoral dissertation, Faculty of Horticulture. University of Tehran, Iran]. (In Persian)
Rasuli, V. & Golmohamadi, M. (2009). Evaluation of drought stress tolerance in grapevine cultivars of Qazvin province. Seed and Plant Imprivement Journal, 25(2), 349-359. (In Persian). https://doi.org/10.22092/spij.2017.111006
Razavi, F. (2012). Molecular and physiological responses to drought stress in Fragaria sp. Universitaat Press, University of Ghent, Gent, Belgium.
Razavi, F., De Keyser, E., De Riek, J., & Van Labeke, M.C. (2011). A method for testing drought tolerance in Fragaria based on fast screening for water deficit response and use of associated AFLP and EST candidate gene markers. Euphytica, 180, 385-409. http://dx.doi.org/10.1007/s10681-011-0398-x
Richardson, S. G., & McKell, C. M.  (1980). Water relations of Atriplex canescens as affected by the salinity and moisture percentage of processed oil shale. Agronomy Journal, 72 (6), 946-950. https://doi.org/10.2134/agronj1980.00021962007200060020x
Santos, T. P., Lopes, C. M., Rodrigues, M. L., Souza, C. R., Maroco, J. P., Pereira, J. S., Silva, J. R., & Chavez, M. M. (2003). Partial rootzone drying: Effects on growth and fruit quality of field-grown grapevines (Vitis vinifera L.). Functional Plant Biology, 30, 663-671. doi: 10.1071/FP02180.
Schultz, H. R. (2000). Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV B effects. Australian Journal of Grape and Wine Research, 6, 2-12. http://dx.doi.org/10.1111/j.1755-0238.2000.tb00156.x
Serra, I., Strever, A., Myburgh, P.A., & Deloire, A. (2014). Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20, 1-14. http://dx.doi.org/10.1111/ajgw.12054
Sofo, A., Nuzzo, V., Tataranni, G., Manfra M., De Nisco M., & Scopa, A. (2012). Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.). Journal of Plant Physiology, 169, 1023-1031. https://doi.org/10.1016/j.jplph.2012.03.007
Sokhtsarai, R., Ebadi, A., Salami, S.A., & Haji Ahmad, P. (2019). Physiological and biochemical response of three Iranain grapevine cultivars ‘Bidane sefid’, ‘Chafte’ and ‘Yaghooti’ to drought stress. Plant Production Research (Agricultural Sciences and Natural Resources), 26(2), 1-13. (In Persian).
Taiz, L., & Zeiger, E. (2006). Plant physiology. Sinauer Associates, Inc. Sunderland, USA.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 1-11. http://dx.doi.org/10.1186/gb-2002-3-7-research0034
Zandkarimi, H., Ebadi, A., Salami, S. A., Alizade, H., & Baisakh (2015). Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). PLOS ONE. http://dx.doi.org/10.1371/journal.pone.0134288
Zhao, J., Zhang, X., & Guo, R., et al., (2018). Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture, 132, 359–370. https://link.springer.com/article/10.1007/s11240-017-1335-z