تاثیر نانوذرات دی‌اکسید تیتانیوم بر ویژگی‌های مورفوفیزیولوژیکی گل شاخه بریده رز

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

چکیده

افزایش عمر گل­های شاخه بریده و حفظ کیفیت آنها چالش اصلی گل‌فروشان در تجارت گل در سراسر جهان است. به منظور بررسی تاثیر کاربرد پیش از برداشت نانو ذرات دی اکسید تیتانیوم بر برخی ویژگی­های مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی پس از برداشت گل رز شاخه بریده رقم 'کلاسیک سزان' آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در سال 1400 اجرا گردید. نانوذرات دی­اکسید تیتانیوم با غلظت­های صفر، 5 و 10 میلی­گرم بر لیتر، دو ماه پیش از برداشت (هر 10 روز یکبار و در مجموع 6 بار) روی گل­ها محلول پاشی گردید. پس از برداشت گل­ها، ویژگی های موردنظر در فاصله‌های صفر، 4، 8 و 12 روز مورد ارزیابی قرار گرفتند. نتایج نشان داد که تیمار نانو ذرات دی­اکسید­تیتانیوم باعث بهبود تمام صفات مورد آزمایش گردید. گل‌های تیمار شده با نانوذرات دی­اکسید تیتانیوم با غلظت صفر (شاهد)، 5 و 10 میلی گرم بر لیتر در پیش از برداشت به ترتیب دارای قطر گل 3/40، 47 و 6/48 میلی‌متر بودند. تیمار 10میلی­گرم در لیتر نانوذرات دی­اکسید تیتانیوم باعث 4 روز افزایش در عمر گلجایی نسبت به شاهد گردید و عمرگلجایی به 12 روز افزایش یافت. تیمار با نانوذرات دی­اکسید تیتانیوم باعث افزایش میزان نسبی محلول جذب شده و کاهش میزان نشت یونی گردید. همچنین، پروتئین کل، و آنزیم‌های پراکسیداز و سوپراکسید دیسموتاز تحت تیمار نانوذرات دی­اکسید تیتانیوم افزایش یافتند. بر اساس نتایج، غلظت 10 میلی­گرم در لیتر در بهبود صفات پس از برداشت گل رز شاخه بریده موثرتر از 5 میلی‌گرم در لیتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Titanium Dioxide Nanoparticles on Morphophysiological Characteristics of Cut Rose Flowers

نویسندگان [English]

  • Hamid Soleymani
  • Masoud Arghavani
  • Mitra Aelaei
Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Extending the vase life of cut flowers and maintaining their quality is a major challenge for florists in the flower trade worldwide. In order to study the effect of pre-harvest application of titanium dioxide nanoparticles on some morphological, physiological and biochemical characteristics of the cut rose cultivar 'Classic Cezanne' a factorial experiment in the form of a completely randomized design with three replications was conducted during the year 2021. Titanium dioxide nanoparticles (0, 5 and 10 mg L-1) were sprayed on the flowers two months before harvest (once every 10 days and a total of 6 times). Some morphophysiological traits were evaluated at intervals of 0, 4, 8 and 12 days after harvesting. The results showed that titanium dioxide nanoparticles improved all the tested traits. Flowers treated with 0 (control), 5 and 10 mg L-1 titanium dioxide nanoparticles had flower diameters of 40.3, 47 and 48.6, respectively. Applying the 10 mg L-1 titanium dioxide nanoparticles increased the shelf life of flowers by 4 days compared to the control; in the other words, the shelf life increased to 12 days. Titanium dioxide nanoparticles also increased the relative amount of absorbed solution and decreased the amount of ion leakage. Meanwhile, total protein, peroxidase enzyme, superoxide dismutase enzyme and catalase enzyme increased under applied concentrations of titanium dioxide nanoparticles. Based on the results of this study, the effect of the concentration of 10 mg L-1 on improving the post harvest traits of rose cut flowers was more effective than 5 mg L-1.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Nanoparticle
  • Postharvest life
  • Xylem occlusion

Extended Abstract

Introduction

Roses are among the most significant ornamental flowers in the global floriculture industry, particularly prized as cut flowers due to their beauty, fragrance, and commercial value. However, one of the persistent challenges faced by producers and distributors is the decline in post-harvest quality, primarily due to improper storage and handling conditions after harvesting. This deterioration can result in substantial economic losses and reduced customer satisfaction. As a result, there has been growing interest in identifying substances and methods that can enhance the post-harvest quality and shelf life of cut flowers. In recent years, nanotechnology has emerged as a powerful tool in agricultural and horticultural sciences. Nanoparticles, materials with dimensions less than 100 nanometers, have demonstrated unique physicochemical properties that can be exploited to improve plant growth, resistance to stress, and post-harvest performance. Titanium dioxide (TiO₂) nanoparticles, in particular, have garnered considerable attention due to their high stability, photocatalytic activity, and role in enhancing physiological responses in plants. These nanoparticles have been shown to influence various biochemical and morphological traits, making them a potential candidate for improving the quality and longevity of cut flowers. In the present study, the pre-harvest foliar application of titanium dioxide nanoparticles was evaluated for its effects on the morpho-physiological characteristics and vase life of rose cut flowers (cultivar: Classic Cezanne). The objective was to determine whether TiO₂ nanoparticles could enhance post-harvest quality traits and extend the freshness of cut roses.

 

Materials and methods

This research was conducted during the 2021 growing season in a commercial rose greenhouse located in Nazarabad city, Alborz province, Iran. Titanium dioxide nanoparticles were applied at three different concentrations: 0 mg·L⁻¹ (control), 5 mg·L⁻¹, and 10 mg·L⁻¹. The nanoparticles were sprayed onto rose bushes at ten-day intervals starting two months prior to the harvest date. The goal of this pre-harvest application was to allow sufficient time for physiological responses to develop. Following harvest, the flowers were carefully transported to the laboratory for evaluation. Several morpho-physiological and biochemical parameters were measured on days 0, 4, 8, and 12 of vase life. These traits included vase life duration, flower diameter, fresh weight, uptake of vase solution, total soluble solids (TSS), electrolyte leakage, petal anthocyanin content, total protein content, and levels of malondialdehyde (MDA), a marker of oxidative stress and membrane damage. Additionally, the activity levels of two important antioxidant enzymes, peroxidase (POD) and superoxide dismutase (SOD), were measured as indicators of the plant’s defense response. The experimental design followed a factorial arrangement based on a completely randomized design (CRD), with three replications for each treatment. Data were analyzed statistically using analysis of variance (ANOVA), and significant differences between means were determined using Duncan’s multiple range test at the 1% probability level.

 

Results and Discussion

The analysis of variance showed that titanium dioxide nanoparticle treatments had a significant effect (p < 0.01) on the majority of traits related to post-harvest quality. Notably, the 10 mg·L⁻¹ TiO₂ treatment resulted in the longest vase life, averaging 12 days, compared to only 7 days in the control group. This suggests that TiO₂ nanoparticles play a role in delaying senescence and maintaining flower freshness. In terms of morphological characteristics, the flowers treated with 10 mg·L⁻¹ of TiO₂ nanoparticles exhibited a 35.7% increase in flower diameter and a 20.4% increase in fresh weight compared to the control. These improvements likely reflect better water status, cellular turgor, and metabolic activity in treated plants. Additionally, the uptake of vase solution increased by 35% in the 10 mg·L⁻¹ treatment group, indicating enhanced water transport and reduced xylem blockage, common causes of early wilting in cut flowers. The higher uptake rates are likely correlated with the increased activity of antioxidant enzymes, which can protect vascular tissues from oxidative damage. From a biochemical perspective, the total protein content and superoxide dismutase activity were significantly elevated in flowers treated with titanium dioxide nanoparticles. SOD activity increased by 1.36%, reflecting improved stress tolerance and detoxification of reactive oxygen species (ROS). Meanwhile, MDA content was reduced, signaling decreased membrane lipid peroxidation and better cell membrane stability. These results support the hypothesis that titanium dioxide nanoparticles activate protective physiological pathways, enhancing the flower’s ability to maintain quality during post-harvest storage. The observed improvements in both structural and biochemical attributes suggest that TiO₂ nanoparticles help preserve freshness by promoting water balance, delaying senescence, and boosting internal defense mechanisms.

 

Conclusion

The findings of this study demonstrate that pre-harvest foliar application of titanium dioxide nanoparticles, particularly at a concentration of 10 mg·L⁻¹, can significantly improve the post-harvest quality of rose cut flowers. This treatment extended vase life, enhanced flower diameter and fresh weight, improved water uptake, and strengthened the plant’s antioxidant defense system. The increase in total protein and superoxide dismutase activity, along with the reduction in malondialdehyde levels, indicates a clear improvement in stress resistance and physiological stability. Overall, the application of TiO₂ nanoparticles appears to be an effective, non-toxic, and practical approach to enhance the market value and shelf life of cut roses. These results offer a promising strategy for commercial rose producers seeking to improve flower quality and reduce post-harvest losses. Further research could explore the underlying molecular mechanisms and evaluate the efficacy of TiO₂ nanoparticles under different environmental conditions and in other flower cultivars.

چمنی، اسماعیل.، خلیقی، احمد.، جویس، داریل.، ایروینق، دونالد.، زمانی، ذبیح اله، مستوفی، یونس و کافی، محسن (1384). اثر تیوسولفات نقره و 1- متیل سیکلوپروپن بر ویژگی های فیزیکو شیمیایی گل بریدنی رز رقم فرست رد. مجله علوم و فنون باغبانی ایران، 6(3)، 159-170.
داوری، آذر، سلوکی، محمود و فاضلی نسب، بهمن (1396). بررسی اثر نانو ذرات دی‌اکسید تیتانیوم و اسید جاسمونیک بر روند تغییرات فیتوشیمیایی و آنتی‌اکسیدانی عصاره ژنوتیپ‌های گیاه دارویی (Satureja hortensis L.). اکوفیتوشیمی گیاهان دارویی، 5(4)، 1-20.
غلامی، اتنا، عباسپور، حسین.، گرامی، مهیار و هاشمی مقدم، حمید (۱۳۹۹). بررسی اثر نانوذرات تیتانیوم‌دی‌اکسید (Tio2) بر رنگیزه های فتوسنتزی و برخی از خصوصیات بیوشیمیایی و آنتی اکسیدانی گیاه رزماری (Rosmarinus officinalis L.). مجله علوم و صنایع غذایی ایران،17(105)،123-134. http://fsct.modares.ac.ir/article-7-27565-fa.html
 
RERERENCES
Ahmad, I., Saleem, M. & Dole, J. M. (2016). Postharvest performance of cut ‘White Prosperity’ gladiolus spikes in response to nano-and other silver sources, Canadian Journal of Plant Science, 96(3), 511-516. http://dx.doi.org/10.1139/CJPS-2015-0281
Beni, M. A., Hatamzadeh, A., Nikbakht, A., Ghasemnezhad, M., & Zarchini, M. (2013). Improving physiological quality of cut tuberose (Polianthes tuberosa cv. Single) flowers by continues treatment with humic acid and nano-silver particles. Journal of Ornamental and Horticultural Plants, 3(3), 133-141. http://dx.doi.org/10.6084/m9.figshare.14035055.v1
Bollella, P., Schulz, C., Favero, G., Mazzei, F., Ludwig, R., Gorton, L., & Antiochia, R. (2017). Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis, 29(1), 77-86. http://dx.doi.org/10.1002/elan.201600476
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Castiglione, M. R., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano- TiO2 on seed germination, development and mitosis of roottip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13, 2443-2449. http://dx.doi.org/10.1007/s11051-010-0135-8
Chamani, E., Khalighi, A., Jouis, D., … and Kafi, M. (2005) Effect of Silver thiosulfate and 1-Methylcyclopropene on physicochemical traits of cut flower rose cv. First Red. Iranian Journal of Horticultural Science and Technology, 6(3), 159-170. (In Persian).
 
Chance, B., & Maehly, A. C. (1955). Assays of catalase and peroxidases. Methods in Enzymology, 2, 764-775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8
Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews. 107, 2891–2959. http://dx.doi.org/10.1021/cr0500535
Chen, X., & Schluesener, H. J. (2008). Nanosilver: A nano product in medical application. Toxicology Letters,, 176(1),1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
Colon, G., Maicu, M., Hidalgo, M. C., & Navio, J. A. (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental. 67, 41–51. http://dx.doi.org/10.1016/j.apcatb.2006.03.019
Davari A., Solouki, M., Fazeli-Nasab, B. (2018). Effects of jasmonic acid and titanium dioxide nanoparticles on process of changes of phytochemical and antioxidant in genotypes of Satureja hortensis L. Eco-phytochemical Journal of Medicinal Plants, 5(4), 1-19. (In Persian).
Duffy, E. F., Touati, F. A., & Kehoe, S.C. (2004). A novel TiO2 -assisted solar photocatalytic batch process disinfection reactor for the treatment of biological and chemical contaminants indomestic drinking water in development countries. Solar Energy, 77, 649 - 655. http://dx.doi.org/10.1016/j.solener.2004.05.006
Dubey, S. P., Lahtinen, M., & Sillanpaa, E. (2010). Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 364(1-3), 34-41. http://dx.doi.org/10.1016/j.colsurfa.2010.04.023
Fonseca, J. d. M., Alves, M. J.  d.S., Soares, L. S., Moreira, R. d. F. P. M., Valencia, G. A., & Monteiro, A. R. (2021). A review on TiO2-based photocatalytic systems applied in fruit postharvest: setups and perspectives. International Food Research Journal, 144, 110378. https://doi.org/10.1016/j.foodres.2021.110378
Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C., & Yang, P. (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biological Trace Element Research, 111(1-3), 239–253. https://doi.org/10.1385/bter:111:1:239
García-González, A., De Abril Alexandra Soriano-Melgar, L., María Luisa Cid-López Yakeline Cortez-Mazatán, G., Mendoza-Mendoza, E., Alonso Valdez-Aguilar, L., & Darío Peralta-Rodríguez, R. (2022). Effects of calcium oxide nanoparticles on vase life of gerbera cut flowers. Scientia Horticulturae, 291, 3, 110532. https://doi.org/10.1016/j.scienta.2021.110532
Ghidan, A. Y., & Antary, T. M. A. (2019). Applications of nanotechnology in agriculture. In M. Stoytcheva, & R. Zlatev (Eds.). Applications of Nanobiotechnology. (pp.1-14). IntechOpen. https://doi.org/10.5772/intechopen.88390
Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10(1), 912. https://doi.org/10.1038/s41598-020-57794-1
Golami A, Abbaspour H, Gerami M, Hashemi-Moghaddam H. (2020) Investigation of effect of titanium dioxide nanoparticles (TiO2) on photosynthetic pigments and some biochemical and antioxidant properties of the Rosmarinus officinalis L Journal of Food Science and Technology(Iran); 17(105), 123-134. (In Persian). http://fsct.modares.ac.ir/article-7-27565-fa.html
Hasanzadeh Naemi, M., Zarinnia, V., Jari, S.K., & Fatahi, F. (2021). The effect of exogenous methyl jasmonate and brassinosteroid on physicochemical traits, vase life, and gray mold disease of cut Rose (Rosa hybrida L.) flowers. Journal of the Saudi Society of Agricultural Sciences, 20(7), 467-475. https://doi.org/10.1016/j.jssas.2021.05.007
Hassan, F.A.S., Ali, E.F., & El-Deeb, B. (2014). Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Scientia Horticulturae. 179, 340–348. https://doi.org/10.1016/j.scienta.2014.09.053
Hajizadeh, H.S., Farokhzad, A. and Chelan, V.G. 2012. Using of preservative solutions to improve postharvest life of Rosa Hybrid cv. Black magic. International Journal of Agricultural Technology. 8: 1801-1810.
He, S., Joyce., D.C., Irving, D.E., & Faragher, J.D. (2012). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’inflorescences. Postharvest Biology and Technology, 41, 78–84. https://doi.org/10.1016/j.postharvbio.2012.03.002
Helal, M., Sami, R., Algarni, E., Alshehry, G., Aljumayi, H., Al-Mushhin, A.A.M., Benajiba N., Chavali, M., Kumar, N., Iqbal, A., Aloufi, S., Alyamani, A., Madkhali, N., & Almasoudi, A. (2022). Active bionanocomposite coating quality assessments of some cucumber properties with some diverse applications during storage condition by chitosan, nano titanium oxide crystals, and sodium tripolyphosphate. Crystals, 12(2), 131. https://doi.org/10.3390/cryst12020131
Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological trace element research, 105(1-3), 269–279. https://doi.org/10.1385/bter:105:1-3:269
Ichimura, K., Kishimoto, M., Norikoshi, R., Kawabata, Y., & Yamada K. (2005). Soluble carbohydrates and variation in vase-life of cut rose cultivars ‘Delilah’ and ‘Sonia’. The Journal of Horticultural Science and Biotechnology. 80(3), 280-286. http://dx.doi.org/10.1080/14620316.2005.11511930
Imani, A., barzegar, K., Piripireivatlou, S. (2011). Relationship between frost injury and ion leakage as an indicator of cold hardiness in 60 almond selections. Journal of Nuts, 2(1), 22-26. https://doi.org/10.22034/jon.2011.515758
Kamiab, F., Shahmoradzadeh Fahreji, S., & Zamani Bahramabadi, E. (2017). Antimicrobial and physiological effects of silver and silicon nanoparticles on vase life of Lisianthus (Eustoma grandiflora cv. Echo) flowers. International Journal of Horticultural Science and Technology, 4(1), 135-144. https://doi.org/10.22059/ijhst.2017.228657.180
Kamal, R, & Mogazy, A.M. (2021). Effect of doping on TiO2 nanoparticles characteristics: studying of fertilizing effect on cowpea plant growth and yield. Journal of Soil Science and Plant Nutrition. 23, 325–337. https://doi.org/10.1007/s42729-021-00648-0
Khojah, E., Sami, R., Helal, M., Elhakem, A., Benajiba, N., Alkaltham, M.S., & Salamatullah, A.M. (2021). Postharvest physicochemical properties and fungal populations of treated cucumber with sodium tripolyphosphate/titanium dioxide nanoparticles during storage. Coatings, 11, 613. http://dx.doi.org/10.3390/coatings11060613
Koushesh Saba, M., & Nazari, F. (2017). Vase life of gerbera cut Flower cv. pink power affected by different treatments of plant essential oils and silver nanoparticles. Journal of Plant Production Research, 24(2), 43-59. https://doi.org/10.22069/jopp.2017.11154.2036
Laware, S., & Raskar, S. (2014). Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology Science, 3, 874-881.
Langroudi, M.E., Hashemabadi, D., Kalatejari, S., & Asadpour, L. (2019). Effect of silver nanoparticles, spermine, salicylic acid and essential oils on vase life of alstroemeria. Journal of Neotropical Agriculture, 6(2), 100–108. http://dx.doi.org/10.32404/rean.v6i2.2366
Li, H., Li, H., Liu, J., Luo, Z., Joyce, D., & He, S. (2017). Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’ spikes. Postharvest Biology and Technology, 123, 102–111. http://dx.doi.org/10.1016/j.postharvbio.2016.08.014
Lin, X., Li, H., Lin, S., Xu, M., Liu, J., Li, Y., & He, S. (2019). Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with nano-silver and sucrose. The Journal of Horticultural Science and Biotechnology, 94(4), 513-521. https://doi.org/10.1080/14620316.2019.1572461
Mazarie, A., Mousavi-nik, S., Ghanbari, A., & Fahmideh, L. (2019). Effect of different spraying concentrations of jasmonic acid and titanium dioxide nanoparticles on some physiological traits and antioxidant system activity of Sage (Salvia officinalis L). Iranian Journal of Plant Biology, 11(1), 1-22.( inPersian) https://doi.org/10.22108/ijpb.2018.110510.1092
Miller, G., & Senjen, R. (2008). Nanotechnology used for food packaging and food contact materials. Nanotechnology in Food and Agriculture. 2, 14-68.
Moallaye-Mazraei, S., Chehrazi, M., & Khaleghi, E., (2020). The effect of calcium nanochelate on morphological, physiological, biochemical characteristics and vase life of three cultivars of gerbera under hydroponic system. Plant Productions, 43 (1), 53–66.
Mohammadi Ostad Kalayeh, S., Mostofi, Y., & Basirat, M. (2011). Study on some chemical compounds on the vase life of two cultivars of cut roses. Journal of Ornamental and Horticultural Plants. 1(2), 123-128.
Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological trace element research, 152(3), 403–410. https://doi.org/10.1007/s12011-013-9631-x
Naing, A. H., & Kim, C. K. (2020). Application of nano-silver particles to control the postharvest biologyof cut flowers: A review. Scientia Horticulturae, 270, 109463. https://doi.org/10.1016/j.scienta.2020.109463
Norman, D. J., & J. Chen (2011). Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience, 46, 426– 428. https://doi.org/10.21273/HORTSCI.46.3.426
Owolade, O. F., & Ogunleti. D. O. (2008). Effects of titanium dioxide on the diseases, development and yield of edible cowpea. Plant Protection Research, 48, 329–335. https://doi.org/10.2478/v10045-008-0042-5
Rafi, Z. N., & Ramezanian, A. (2013). Vase life of cut rose cultivars ‘Avalanche’ and ‘Fiesta’ as affected by nano-silver and S-carvone treatments. South African Journal of Botany, 86, 68-72. https://doi.org/10.1016/j.sajb.2013.02.167
Rezvanypour, Sh., & Osfoori, M. )2011(. Effect of chemical treatments and sucrose on vase life of three cut rose cultivars. Journal of Research on Crop Ecophysiology, 7(2), 133-139.
Reid, M. S. &  Jiang, C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. Horticultural Reviews, 40, 1-54. https://doi.org/10.1002/9781118351871.ch1
Rezaei Nejad, A., & Ismaili, A. (2014). Comparison of some physio-morphological characteristics of eight cut rose cultivars. Journal of Crops Improvement, 16(3), 663-674. https://doi.org/10.22059/jci.2014.53266
Sami, R., Elhakem, A., Almushhin, A., Alharbi, M., Almatrafi, M., Benajiba, N., Fikry, M., & Helal, M. (2021a). Enhancement in physicochemical parameters and microbial populations of mushrooms as influenced by nano-coating treatments. Scientific Reports, 11, 7915. https://doi.org/10.1038/s41598-021-87053-w
Sami, R., Elhakem, A., Alharbi, M., Benajiba, N., Almatrafi, M., Abdelazez, A., & Helal, M. (2021b). Evaluation of antioxidant activities, oxidation enzymes, and quality of nano-coated button mushrooms (Agaricus Bisporus) during storage. Coatings, 11, 149. https://doi.org/10.3390/coatings11020149
Samadzadeh, H., & Kamiab, F. (2017). Effects of silver and calcium nanoparticles on vase life and some physiological traits of 'Konst Coco' Alstroemeria cut flower. Journal of Science and Technology of Greenhouse Culture, 8, 75–89.
Singh, A., Singh, N.B., Afzal, S., Singh, T., & Hussain, I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), 185-201. https://doi.org/10.1007/s10853-017-1544-1
Shabanian, S., Nasr Esfahani, M., Karamian, R., & Lam-Son Phan, T. (2018). Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharvest Biology and Technology, 137, 1-8. https://doi.org/10.1016/j.postharvbio.2017.11.009
Shafiee-Masouleh, S. S. (2018). Effects of nano-silver pulsing, calcium sulfate and gibberellin on an antioxidant molecule and vase life of cut gerbera flowers., Advances in Horticultural Science, 32(2), 185-191. https://doi.org/10.13128/ahs-21864
Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. (2013). Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and environmental safety, 93, 60–67. https://doi.org/10.1016/j.ecoenv.2013.03.033
Sudaria, M. A., Uthairatanakij, A., & Nuguyen, H.T. (2017). Postharvest quality effects of different vaselife solutions on cut rose (Rosa hybrida L.). International Journal of Agriculture Forestry and Life Sciences, 1(1), 12-20.
Sunpapao, A., Wonglom, P., Satoh, S., Takeda, S., & Kaewsuksaeng, S. (2019) Pulsing with magnesium oxide nanoparticles maintains postharvest quality of cut lotus flowers (Nelumbo nucifera Gaertn) ‘Sattabongkot’ & ‘Saddhabutra. The Horticulture Journal, 88(3), 420–426. https://doi.org/10.2503/hortj.UTD-087
Stewart, R. R., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant physiology, 65(2), 245–248. https://doi.org/10.1104/pp.65.2.245
Van Ieperen, W., Van Meetran, U., & Nijsse, J. (2002). Embolism repair in cut flower stems: a physical approach. Postharvest Biology and Technology, 25, 1-14.
Van, M. U. W., Van Iberen Nijsse, J., & Keijzer, K. (2001). Processes and xylem antimicrobial properties involved in dehydration dynamics of cut flowers. Acta Horticulturae. 543, 207– 211. https://doi.org/10.17660/ActaHortic.2001.543.25
Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64(1), 88–93. https://doi.org/10.1104/pp.64.1.88
Wu, B., Huang, R., Sahu, M., Feng, X., Biswas, P., & Tang, Y.J. (2010). Bacterial responses to Cu-doped TiO2 nanoparticles. Science of the Total Environment, 408 (7), 1755-1758. https://doi.org/10.1016/j.scitotenv.2009.11.004
Yagi, M. I., Elgemaby M. N. A., Ismael M. I. A., & Almubarak M. A. A. (2014). Prolonging of the vase life of Gerbera jamesonii treatment with sucrose before and during simulated transport. International Journal of Sciences: Basic and Applied Research, 18, 254–262.
Yan, A. & Chen, Z. (2019). Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Science,. 20(5), 1003. https://doi.org/10.3390/ijms20051003
Zahedi, S. M., Karimi, M., & Teixeira da Silva, J. A. (2020). The use of nanotechnology to increase quality and yield of fruit crops. Journal of the Science of Food and Agriculture, 100(1), 25–31. https://doi.org/10.1002/jsfa.10004