The effect of simultaneous application of kaolin and salicylic acid on some biochemical ‎characteristics of Nagami kumquat

Document Type : Full Paper

Authors

1 Ph. D. Candidate, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2 Associate Professor, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 Associate Professor, Institute of Biotechnology, Rasht, Iran

Abstract

Kumquat is one of the citrus fruits that has gradually become important in the world. The fruits of kumquat suffer from sunburn in intense sunlight. In order to reduce the adverse effects of solar radiation, in this experiment, treatments of kaolin (0, 3 and 5%) and salicylic acid (with concentrations of 0, 0.1 and 1 mM) were used as foliar spray on potted samples. The evaluated treatments included relative water content, gas exchange, biochemical characteristics of the leaves, antioxidant enzymes activity and concentrations of nutrients. The results showed that treatments had significant effects on the measured parameters. Kaolin increased stomatal conductance and net CO2 uptake by creating a thin coating on the plant and protecting it from environmental stresses and reducing plant temperature. Salicylic acid also had positive effects on the activities of antioxidant enzymes.The effects of treatments on the balance of plant nutrients were not very noticeable, although slight changes were observed in some cases. In general, the results of this experiment showed that the use of kaolin 5% and 1mM salicylic acid together can be considered as a cheap and effective treatment in kumquat and in order to protect the plant in high temperature and severe radiation conditions.

Keywords

Main Subjects


  1. AbdAllah, A. (2019). Impacts of Kaolin and Pinoline foliar application on growth, yield and water use efficiency of tomato (Solanum lycopersicum) grown under water deficit: A comparative study. Journal of the Saudi Society of Agricultural Sciences, 18(3), 256-268.
  2. Aebi, H. (1984). Catalase in vitro. Methods in enzymology, 105, 121-126.
  3. Aganchich, B., Tahi, H., Wahbi, S., Elmodaffar, C. & Serraj, R. (2007). Growth, water relations and antioxidant defense mechanisms of olive (Olea europaea) subjected to Partial Root Drying (PRD) and Regulated Deficit Irrigation (RDI). Plant Biosystems, 141(2), 252-264.
  4. Aghaeifard, F., Babalar, M., Fallahi, E. & Ahmadi, A. (2016). Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria× Ananassa ) cv. Camarosa. Journal of plant nutrition, 39(13), 1821-1829.
  5. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant physiology, 24(1), 1.
  6. Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U. & Gattuso, G. (2011). Kumquat (Fortunella japonica Swingle) juice: Flavonoid distribution and antioxidant properties Food Research. International, 44(7), 2190-2197.
  7. Beyer, W.F. & Fridovich, I. )1987(. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161:559-566.
  8. Bondada, B. R. & Syvertsen, J. P. (2005). Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environmental and experimental botany, 54(1), 41-48.
  9. Bradstreet, R. B. (1954). Kjeldahl method for organic nitrogen. Analytical Chemistry, 26(1), 185-187.
  10. Brand-Williams, W., Cuvelier, M. E. & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  11. Brito, C., Dinis, L. T., Ferreira, H., Rocha, L., Pavia, I., Moutinho-Pereira, J. & Correia, C. M. (2018). Kaolin particle film modulates morphological, physiological and biochemical olive tree responses to drought and rewatering. Plant Physiology and Biochemistry, 133, 29-39.
  12. Brito, C., Dinis, L. T., Luzio, A., Silva, E., Gonçalves, A., Meijón, M. & Correia, C. M. (2019). Kaolin and salicylic acid alleviate summer stress in rainfed olive orchards by modulation of distinct physiological and biochemical responses. Scientia Horticulturae, 246, 201-211.
  13. Brito, C., Dinis, L. T., Moutinho-Pereira, J. & Correia, C. (2019). Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Scientia Horticulturae, 250, 310-316.
  14. Chamchaiyaporn, T., Jutamanee, K., Kasemsap, P., Vaithanomsat, P. & Henpitak, C. (2013). Effects of kaolin clay coating on mango leaf gas exchange, fruit yield and quality. Agriculture and Natural Resources, 47(4), 479-491.
  15. Chang, Y. C. & Lin, T. C. (2020). Temperature effects on fruit development and quality performance of Nagami kumquat (Fortunella margarita [Lour.] Swingle). The Horticulture Journal, 89 (4), 351–358.
  16. El-Tanany, M. M., Kheder, A. M. A. & Abdallah, H. R. (2019). Effect of some treatments on reducing sunburn in Balady Mandarin fruit trees (Citrus reticulata, Blanco). Middle East J Agric Res, 8, 889-897.
  17. El Zayat, H. E. & Ali, M. S. (2019). Effect of some biological stimulants and kaolin particles sprays on fruit retention, productivity and fruit quality of Washington Navel orange trees. Hortscience Journal of Suez Canal University, 8(1), 69-78.
  18. Faghih, S., Zamani, Z., Fatahi, R. & Liaghat, A. (2019). Effects of deficit irrigation and kaolin application on vegetative growth and fruit traits of two early ripening apple cultivars. Biological research, 52 (43) 1-12.
  19. Gregoriou, K., Pontikis, K. & Vemmos, S. (2007). Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea). Photosynthetica, 45(2), 172-181.
  20. Gullo, G., Dattola, A., Vonella, V. & Zappia, R. (2020). Effects of two reflective materials on gas exchange, yield, and fruit quality of sweet orange tree Citrus sinensis (L.) Osb. European Journal of Agronomy, 118, 126071.
  21. Habibi, G. (2012). Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis, 56(1), 57-63.
  22. Hayat, Q., Hayat, S., Irfan, M. & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and experimental botany, 68(1), 14-25.7
  23. Hu, Y., Burucs, Z., von Tucher, S. & Schmidhalter, U. (2007). Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environmental and Experimental Botany, 60(2), 268-275.
  24. Jifon, J. L. & Syvertsen, J. P. (2003). Kaolin particle film applications can increase photosynthesis and water use efficiency of 'Ruby Red' grapefruit leaves. Journal of the American Society for Horticultural Science, 128(1), 107-112.
  25. Kang, G., Li, G., Xu, W., Peng, X., Han, Q., Zhu, Y. & Guo, T. (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Journal of Proteome Research, 11(12), 6066-6079.
  26. Khavari, M., Fatahi, R. & Zamani, Z. (2021). Salicylic acid and kaolin effects on pomological, physiological, and phytochemical characters of hazelnut (Corylus avellana) at warm summer condition. Scientific Reports, 11(1), 1-14.
  27. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology,148, 350-382.
  28. Lobato, A. K. D. S., Barbosa, M. A. M., Alsahli, A. A., Lima, E. J. A. & Silva, B. R. S. D. (2021). Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiologia Plantarum, 172(2), 869-884.
  29. Lotfi, R., Ghassemi-Golezani, K. & Pessarakli, M. (2020). Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata) under salinity stress. Biocatalysis and Agricultural Biotechnology, 26, 101635.
  30. Malick, C. P. & Singh, M. B. (1980). Plant enzymology and histo enzymology. Kalyani Publishers New Delhi pp, 286.
  31. Manner, H. I., Buker, R. S., Smith, V. E., Ward, D. & Elevitch, C. R. (2006). Citrus (citrus) and Fortunella (kumquat). Species profile for pacific island agroforestry, 2, 1-35.
  32. Mattos, L. M. & Moretti, C. L. (2015). Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering5(3), 1-6.
  33. Mullan, D. & Pietragalla, J. (2012). Leaf relative water content. In Physiological breeding II: A field guide to wheat phenotyping Pask, A.J.D., Pietragalla, J., Mullan, D.M. and Reynolds, M.P. (Eds) Mexico, D.F. The International Maize and Wheat Improvement Center, CIMMYT. 25-27
  34. Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
  35. Nazar, R., Umar, S., Khan, N. A. & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98, 84-94.
  36. Rosati, A., Metcalf, S. G., Buchner, R. P., Fulton, A. E. & Lampinen, B. D. (2007). Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies. Annals of botany, 99(2), 255-263.
  37. Santini, J., Giannettini, J., Herbette, S., Pailly, O., Ollitrault, P., Luro, F. & Berti, L. (2012). Physiological and biochemical response to photooxidative stress of the fundamental citrus species. Scientia horticulturae, 147, 126-135.
  38. Sestak, Z., Catský, J. & Jarvis, P. G. (1971).. Plant photosynthetic production. Manual of methods. Netherlands, The Hague, Dr. W. Junk NV.
  39. Stevens, J., Senaratna, T. & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49(1), 77-83.
  40. Veste, M., Ben-Gal, A. & Shani, U. (1999). Impact of thermal stress and high VPD on gas exchange and chlorophyll fluorescence of Citrus grandis under desert conditions. Acta Horticulturae, 531, 143-150.
  41. Walinga, I., Van Vark, W., Houba, V. & Van der Lee, J. (1989). Soil and plant analysis: part 7–plant analysis procedures. The Netherlands: Wageningen Agricultural University.
  42. Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59(12), 3317-3325.
  43. Zhang, M., Cao, J., Dai, X., Chen, X., & Wang, Q. (2012). Flavonoid contents and free radical scavenging activity of extracts from leaves, stems, rachis and roots of Dryopteris erythrosoraIranian journal of pharmaceutical research, 11(3), 991-997.