The effect of pyramiding resistance control genes on viral disease of tomato yellow ‎leaf curl virus (TYLCV) on photosynthetic pigments and some physiological traits in ‎different lines

Document Type : Full Paper

Authors

1 Ph.D. Candidate, College of Agriculture, University of Hormozgan, Bandar Abbas, Iran‎

2 Professor, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran‎

Abstract

Tomato yellow leaf viral disease (TYLCV) is one of the most damaging agents that causes very high yield losses worldwide and has spread to most parts of Iran. Numerous strategies have been developed to combat this disease, but these methods have been practically ineffective. In order to investigate the role of transmission and combination of TY-2 and TY-1/3 gene loci in a number of sensitive and desirable line, the present study was performed.Results showed that the lines containing the two TY-2 and TY-1/3 gene loci experienced less damage regarding chlorophyll content and total protein content. In the study of proline content and PAL gene expression, it was observed that lines containing two gene loci showed lower levels of proline and gene expression. Also, in order to detect viral infection by polymerase chain reaction (PCR) using specific primers, it indicated that the virus genome does not replicate in the lines containing both gene loci. In general, the results of this study indicate the high role of the presence and pyramiding of two gene sites TY-2 and TY-1/3 in order to create resistance in tomato against TYLCV and lead to a reduction in damage against this virus.

Keywords


  1. Aimé, S., Alabouvette, C., Steinberg, C., & Olivain, C. (2013). The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Molecular Plant-Microbe Interactions, 26(8), 918-926.‏
  2. Anbinder, I., Reuveni, M., Azari, R., Paran, I., Nahon, S., Shlomo, H., Chen, L., Lapidot, M. & Levin, I. (2009). Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theoretical and Applied Genetics, 119, 519–530.
  3. Bananej, K. (2016). An analysis on the status of tomato yellow leaf curl disease. Applied Entomology and Phytopathology, 84, 157-173.
  4. Bananej, K., Vahdat, A., & Hosseini‐Salekdeh, G. (2009). Begomoviruses associated with yellow leaf curl disease of tomato in Iran. Journal of Phytopathology, 157(4), 243-247.
  5. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.‏
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.‏
  7. Butterbach, P., Verlaan, M. G., Dullemans, A., Lohuis, D., Visser, R. G., Bai, Y., & Kormelink, R. (2014). The TYLCV resistance gene Ty-1 confers resistance in tomato through enhanced transcriptional gene silencing. Characterization of major resistance genes to tomato yellow leaf curl virus. Proceedings of the National Academy of Sciences, 111, 12942-12947.
  8. Chen, D. H., Nelson, R. J., Wang, G. L., Inukai, T., Mackill, D. J., & Ronald, P. C. (2000). Characterization of blast resistance in the durably resistant rice cultivar Moroberekan. In Advances in Rice Blast Research (pp. 17-27). Springer, Dordrecht.‏
  9. Chen, H., He, H., Zou, Y., Chen, W., Yu, R., Liu, X., & Deng, X. W. (2011). Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa). Theoretical and Applied Genetics, 123(6), 869-879.‏
  10. Elbaz, M., Hanson, P., Fgaier, S., & Laarif, A. (2016). Evaluation of tomato entries with different combinations of resistance genes to tomato yellow leaf curl disease in Tunisia. Plant Breeding, 135(4), 525-530.‏
  11. Espinoza, C., Medina, C., Somerville, S., & Arce-Johnson, P. (2007). Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. Journal of Experimental Botany, 58(12), 3197-3212.‏
  12. Espinoza, C., Vega, A., Medina, C., Schlauch, K., Cramer, G., & Arce-Johnson, P. (2007). Gene expression associated with compatible viral diseases in grapevine cultivars. Functional & Integrative Genomics, 7(2), 95-110.‏
  13. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (Eds.). (2005). Virus taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Academic Press.‏
  14. Francia, E., Tacconi, G., Crosatti, C., Barabaschi, D., Bulgarelli, D., Dall’Aglio, E., & Valè, G. (2005). Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture, 82(3), 317-342.‏
  15. Garcia, B. E., Graham, E., Jensen, K. S., Hanson, P., Mejía, L., & Maxwell, D. P. (2007). Co-dominant SCAR marker for detection of the begomovirus-resistance Ty-2 locus derived from Solanum habrochaites in tomato germplasm. Tomato Genetic Cooperative Report, 57, 21-24.‏
  16. Goodman, R. N., Kiraly, Z., & Zaitlin, M. (1967). The biochemistry and physiology of infectious plant diseases. The biochemistry and physiology of infectious plant diseases.‏ David Van Nostrand. Princeton,354 pp.
  17. Griffiths, P. D., & Scott, J. W. (2001). Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. Journal of the American Society for Horticultural Science, 126(4), 462-467.‏
  18. Hajimorad, M. R., & Ahoonmanesh, A. (1993). Occurrence and identification of tomato leaf curl geminivirus in Iran. In Proceedings of the 11th Plant Protection Congress of Iran 28 Aug.-2 Sep., Rasht, Iran (in Farsi).
  19. Halldorson, M. M., & Keller, M. (2018). Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness. Planta, 248(5), 1201-1211.‏
  20. Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, A. S., & Chen, J. T. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for Horticultural Science, 125(1), 15-20.‏
  21. Hulbert, S. H., Webb, C. A., Smith, S. M., & Sun, Q. (2001). Resistance gene complexes: evolution and utilization. Annual Review of Phytopathology, 39(1), 285-312.‏
  22. Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 20(3), 271-284.‏
  23. Ji, Y., Scott, J. W., Schuster, D. J., & Maxwell, D. P. (2009). Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. Journal of the American Society for Horticultural Science, 134(2), 281-288.‏
  24. Lazarowitz, S. G. (1991). Molecular characterization of two bipartite geminiviruses causing squash leaf curl disease: role of viral replication and movement functions in determining host range. Virology, 180(1), 70-80.‏
  25. Lichtenthaler, H. (1987). Chlorophylls and carotenoids: pigment of phosynthetic biomembranes. Method in Enzymology, 148, 350-382.‏
  26. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.
  27. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326.‏
  28. Mushtaq, S., Shamin, F., Shafique, M., & Haider, M. S. (2014). Effect of whitefly transmitted geminiviruses on physiology of tomato (Lycopersicon esculentum) and tobacco (Nicotiana benthamiana L.) plants. Journal of Natural Science Research,4(9), 109-119.
  29. Nevame A Y M, Xia L, Nchongboh C G, Hasan M M, Alam M A, Yongbo L, Wenting Z, Yafei H, Emon R M, Ismail M R, Efisue A, Gang S, Wenhu L & Longting S (2018) Development of a new molecular marker for the resistance to tomato yellow leaf curl virus. Journal of Biomedicine and Biotechnology Research International, 1, 1-10
  30. Pageau, K., Reisdorf-Cren, M., Morot-Gaudry, J. F., & Masclaux-Daubresse, C. (2006). The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum leaves. Journal of Experimental Botany, 57(3), 547-557.‏
  31. Pazarlar, S., Gümüş, M. U. S. T. A. F. A., & Öztekin, G. B. (2013). The effects of tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(2), 427-433.‏
  32. Picó, B., Díez, M. J., & Nuez, F. (1998). Evaluation of whitefly-mediated inoculation techniques to screen Lycopersicon esculentum and wild relatives for resistance to tomato yellow leaf curl virus. Euphytica, 101(3), 259-271.‏
  33. Pontier, D., Gan, S., Amasino, R. M., Roby, D., & Lam, E. (1999). Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Molecular Biology, 39(6), 1243-1255.‏
  34. Rybicki, E. P. (2015). A top ten list for economically important plant viruses. Archives of Virology, 160(1), 17-20.‏
  35. Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954.‏
  36. Shakeel, M. T., Amer, M. A., Al-Saleh, M. A., Ashfaq, M., & Haq, M. I. (2016). Changes in chlorophyll, phenols, sugars and mineral contents of cucumber plants infected with cucumber mosaic virus. Journal of Phytopathology and Pest Management, 3, 1-11.‏
  37. Siddique, Z., Akhtar, K. P., Hameed, A., Sarwar, N., Imran-Ul-Haq, & Khan, S. A. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. Journal of Plant Interactions, 9(1), 702-711.‏
  38. Sofy, A.R., El-Dougdoug, K.A., Mousa, A.A. & Refaey, E. E. (2017). Impact of two TYLCV Egyptian isolates on metabolic and antioxidant activities in some tomato cultivars. International Journal of Advanced Research in Biological Sciences, 4(2), 110-133.
  39. Sofy, M. R., Sharaf, A. M. A., El-Nosary, M. E., & Sofy, A. R. (2018). Salix alba extract induces systemic resistance in Cucumis sativus infected by cucumber mosaic virus. Nature and Science, 16, 107-113.‏
  40. Sumithra, K., & Reddy, A. R. (2004). Changes in proline metabolism of cowpea seedlings under water deficit. Journal of Plant Biology, 31(3), 201-204.‏
  41. Taiwo, M. A., & Akinjogunla, O. J. (2006). Cowpea viruses: Quantitative and qualitative effects of single and mixed viral infections. African Journal of Biotechnology, 5(19).‏
  42. Thind, S. K., Monga, P. K., Kaur, N., & Cheema, S. S. (1996). Analysis of some biochemical and micro-nutrient constituents of yellow mosaic virus infected moong. Indian Journal of Virology, 12(2), 157-159.‏
  43. Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G., Scott, J. W., & Bai, Y. (2013). The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases. PLoS Genetics, 9(3), e1003399.
  44. Yan, Z., Wolters, A. M. A., Navas-Castillo, J., & Bai, Y. (2021). The global dimension of tomato yellow leaf curl disease: Current status and breeding perspectives. Microorganisms, 9(4), 740.
  45. Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., & Czosnek, H. (1994). Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics, 88(2), 141-146.‏