Effect of symbiosis of several mycorrhiza arbuscular fungi species on some quality ‎and physiological indices of potted lisianthus flower ‎(Eustoma grandiflorum ‘Matador Blue’)‎

Document Type : Full Paper


1 Former M. Sc. Student, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Iran

2 Assistant Professor, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Iran

3 Ph.D. Candidate, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Iran


This experiment established to investigate the effect of symbiosis of three mycorrhizal arbuscular fungi (Glomus intraradices,Glomus mosseae, Glomus howei) on growth and quality of dwarf lisianthus flower (Eustoma grandiflorum ‘Matador Blue’). The experiment carried out as factorial based on completely randomized design with three factors, mycorrhizal arbuscular fungi, concentration and bed culture in three replications. The results showed that mycorrhizal increased fresh and dry weight of aerial parts and roots, and plant height and number of buds. Chlorophyll concentration and nitrogen content also increased significantly with increasing mycorrhiza content compared to control. Generally, mycorrhiza application increased P and N content in pot lisianthus leaves. According to the results, incubation of medium with mycorrhiza significantly could improve the nutritional conditions of pot lisianthus and improve the vegetative and generative traits too.


  1. Abdul-Wasea, A., Abdel-Fattah, G., Elhindi, K. H. & Abdel-Salam, E. (2014). The impact of arbuscular mychorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana Polin) plants grown in NaCl-stress conditions. Journal of Biotechnology & Biomaterials, 3, 5-11.
  2. Anderson, N. O. (2007). Flower breeding and genetics, challenges and opportunities for the 21st Century, Springer.
  3. Asrar, A. A., Abdel-Fattah, G. M., Elhindi, K. & Abdel-Salam, E. M. (2014). The impact of arbuscular mychorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana Poelin) plants grown in NaCl-stress. Journal of Food, Agriculture & Environment, 12, 105-112.
  4. Barea, J. M. (1991). Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Advances in Soil Science, Springer.
  5. Barrow, N. J., Malajczuk, N. & Shaw, T. C. (1977). A direct test of the ability of vesicular‐arbuscular mycorrhiza to help plants take up fixed soil phosphate. New Phytologist, 78 (2), 269-276.
  6. Bucking, H. & Kafle, A. (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy, 5(4), 587-612.
  7. Douds, J. D. D., Nagahashi, G., Pfeffer, P. E., Kayser, W. M. & Reider, C. (2005). On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Canadian Journal of Plant Science, 85(1), 15-21.
  8. Ehsani, M., Norinia, A., Bakhshi, G. & Ehsani, G. (2013). Effect of different levels of salinity and coexistence with arbuscular mycorrhizal fungus on yield and some morphological traits of sorghum. Quarterly Journal of Plant Sciences, 8, 1-9. (In Farsi).
  9. Gasemi-ghehsare, M. & Kafi, M. (2008). Scientific and Practical Floriculture. First volume. Third edition. Author's publication. Isfahan University of Technology, 420 pages. (in Farsi)
  10. Ghasemi-ghehsare, M. & Mohammadi, R. (2008). Principles of breeding and seed production in ornamental plants. (First Edition). Elm-Arifin Publishing. (in Farsi)
  11. Grant, C. A., Petersond, G. A. & Capbell, C. A. (2002). Nutrient consideration for diversified cropping systems in the northern great plains. Agronomy Journal, 94,186-198.
  12. Halevy, A. H. & Kofranek, A. M. (1984). Evaluation of lisianthus as a new flower crop. HortScience, 19, 845-847.
  13. Hesami, M., Emami, S. & Yaghmaii, L. (2013). Effect of sowing depth and seed cover on seedling establishment of Quercus brantii Lindl. Journal of Forest and Poplar Research, 21, 573-580. (In Farsi)
  14. He, X. H., Critchley, C. & Bledsoe, C. (2003). Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Reviews in Plant Sciences, 22(6), 531-567.
  15. Hetrick, B. A. D. (1989). Acquisition of phosphorus by mycorrhizal fungi and the growth responses of their host plants. Cambridge University Press.
  16. Hodge, A., Campbell, C. D. & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413(6853), 297-299.
  17. Huang, J. C., Lai, W. A., Singh, S., Hameed, A. & Young, C. C. (2013). Response of mycorrhizal hybrid tomato cultivars under saline stress. Journal of Soil Science and Plant Nutrition, 13 (2), 469-484.
  18. James, B., Rodel, D., Lorettu, U., Reynaldo, E. & Tariq, H. (2008). Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan Journal of Botany, 40(5), 2217-2224.
  19. Khandanmirkohi, A., Shaikhasadi, M., Taheri, M. & Babalar, M. (2015). Effect of mycorrhiza arbuscular fungi and different levels of phosphorus on some aspects of lizanthus growth. Science and Technology of Greenhouse Cultivation, 6, 57-67. (in Farsi)
  20. Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A. L. & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 12, 11-6.
  21. Kijkar, S. (1991). Handbook: Producing rooted cuttings of Eucalyptus camaldulensis. AASEAN-Canada Forest Tree Seed Center Project.
  22. Li, H., Smith, F. A., Dickson, S., Holloway, R. E. & Smith, S. E. (2008). Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain. New Phytologist, 178(4), 852-862.
  23. Leyval, C. & Berthelin, J. (1989). Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant and Soil, 117(1), 103-110.
  24. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods of Enzymology, 148, 350-380.
  25. Miransari-mahabadi, M.R., Bahrami, H., Rejaly, F. & Malakoty, M. G. (2001). Effect of arbuscular mucus arsenic on nutrient uptake and corn yield under stress conditions of soil compaction. Journal of Soil & Water Sciences, 20 (1). (in Farsi)
  26. Nye, P. H. & Tinker, P. B. (1978). Solute movements in the root-soil system. Blackwell, Oxford.
  27. Quilambo, O. A. (2003). The vesicular–arbuscular mycorrhizal symbiosis. African Journal of Biotechnology, 12, 539-543.
  28. Raviv, M. (2010). The use of mycorrhiza in organically-grown crops under semiarid conditions: a review of benefits, constraints and future challenges. Symbiosis, 52(2-3), 65-74.
  29. Siqueira, J.O. & Saggin-Júnior, O.J. (2001). Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 11(5), 245-255.
  30. Smith, S. & Read, D.J. (1997). Mycorrhizal symbiosis. Biologia Plantarum, 40, 154-154.
  31. Thomas, M. S. (2019). Encyclopedia of microbiology (4th ed.). Academic Press.
  32. Yaseen, T., Naseer, A. & Shakeel, M. (2016). Investigating the association of arbuscular mycorrhizal fungi with selected ornamental plants collected from district Charsadda, KPK, Pakistan. Science, Technology & Development, 35(3), 141-147.
  33. Zarei, M., Tadayyon, M. R. & Tadayyon, A. (2014). Effect of biofertilizer, under salinity condition on the yield and oil content of three ecotype of hemp (Cannabis sativa L.). Journal of Crop Improvment, 16(3), 517-529. (in Farsi)