منابع
حسنلو، طاهره؛ احمدی، معصومه؛ خیام نکویی، سید مجتبی و صالحی جوزانی، غلامرضا (1392). اثرات تحریکی عصاره قارچی بر تولید سیلیمارین در کشت ریشههای مویین گیاه دارویی خار مریم (Silybum marianum L.).
حسنلو، طاهره؛ اسکندری، سحر و نجفی، فرزانه (1394). نقش کیتوزان در افزایش تولید فلاونولیگنانها در کشت ریشههای مویین خارمریم (Silybum marianum L.). مجله سلول و بافت، 6(3)، 267- 257. http://dx.doi.org/10.52547/JCT.6.3.257
سروری، سوفیا و باقریان لمراسکی، حسن (1399). مطالعه تاثیر محلول پاشی اسپرمیدین، اسیدسیتریک و پرولین بر رشد و گلدهی همیشه بهار (Calendula officinalis L.) تحت تنش خشکی. فصلنامه گیاه و زیست فناوری ایران، 15(4)، 39-27.
RERERENCES
Akowuah, G. A., Ismail, Z., Norhayati, I. & Sadikun, A. (2005). The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chemistry, 93(2), 311–317. http://dx.doi.org/10.1016/j.foodchem.2004.09.028
Anastassiadis, S., Morgunov, I. G., Kamzolova, S. V. & Finogenova, T. V. (2008). Citric acid production patent review. Recent Patents on Biotechnology, 1923, 107–123. http://dx.doi.org/10.2174/187220808784619757.
Asghari-Zakaria, R., Panahi, A. R. & Sadeghizadeh, M. (2008). Comparative study of chromosome morphology in Silybum marianum. Cytologia, 73(3), 327–332. http://dx.doi.org/10.1508/cytologia.73.327
Ashtiani, S. R., Hasanloo, T. & Bihamta, M. R. (2010). Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharmaceutical Biology, 48(6), 708–715. http://dx.doi.org/10.3109/13880200903264426
Blume, B., Nurnberger, T., Nass, N. & Scheel, D. (2000). Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 12(8), 1425–1440. http://dx.doi.org/10.1105/tpc.12.8.1425
Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary c. Journal of Food and Drug Analysis, 10(3), 178–182. http://dx.doi.org/10.38212/2224-6614.2748
Chen, R., Xue, G., Chen, P., Yao, B., Yang, W., Ma, Q., Fan, Y., Zhao, Z., Tarczynski, M. C. & Shi, J. (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17(4), 633–643. http://dx.doi.org/10.1007/s11248-007-9138-3
Coelho, M. A. Z., Amaral, P. F. F. & Belo, I. (2010). Yarrowai lipolytica: an industrial workhorse. Currient Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2,930–944.
Conforti, F., Statti, G., Uzunov, D. & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) Coutinho seeds. Biological and Pharmaceutical Bulletin, 29(10), 2056–2064. http://dx.doi.org/10.1248/bpb.29.2056
da Veiga Moreira, J., Jolicoeur, M., Schwartz, L. & Peres, S. (2021). Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction. Scientific Reports, 11(1), 1–11. http://dx.doi.org/10.1038/s41598-020-79577-4
del Baño, M. J., Lorente, J., Castillo, J., Benavente-García, O., Del Río, J. A., Ortuño, A., Quirin, K. W. & Gerard, D. (2003). Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. In Journal of Agricultural and Food Chemistry. 51(15). 4247–4253. http://dx.doi.org/10.1021/jf0300745
Elumalai, E. K., Prasad, T. N. V. K. V, Kambala, V., Nagajyothi, P. C. & David, E. (2010). Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities. Archives of Applied Science Research, 2(6), 76–81.
Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N. & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus l. and Rumex obtusifolius l. at different growth stages. Antioxidants, 8(7). http://dx.doi.org/10.3390/antiox8070237
Gad, D., Elhaak, M., Pompa, A., Mattar, M., Zayed, M., Fraternale, D. & Dietz, K. J. (2020). A new strategy to increase production of genoprotective bioactive molecules from cotyledon-derived Silybum marianum l. Callus. Genes, 11(7), 1–14. http://dx.doi.org/10.3390/genes11070791
Georgieva, G., Nedeva, T., Badalova, M., Deleva, V. & Savov, V. (2023). Study of the plant growth-promoting capacity of Pseudomonas putida 1046 in a model plant system. BioRisk, 20, 115–128. http://dx.doi.org/10.3897/ biorisk, 20, 115-128
Gupta, K. M. & R. G. (2012). Effect of Various Media Types on the Rate of Growth of. Indian Journal of Fundamental and Applied Life Sciences ISSN:, 2(2), 141–144.
Hao, Y. J., An, X. L., Sun, H. D., Piao, X. C., Gao, R. & Lian, M. L. (2020). Ginsenoside synthesis of adventitious roots in Panax ginseng is promoted by fungal suspension homogenate of Alternaria panax and regulated by several signaling molecules. Industrial Crops and Products, 150, 112414. http://dx.doi.org/10.1016/j.indcrop.2020.112414.
Hasanlo, T., Khavari Nejad, R. A., Majidi, E. & Shams Ardakani, M. R. (2008). Flavonolignan production in cell suspension culture of Silybum marianum. Pharmaceutical Biology, 46(12), 876–882. http://dx.doi.org/10.1080/13880200802367684
Hazrati, S., Mollaei, S., Rabbi Angourani, H., Hosseini, S. J. & Sedaghat, M. (2020) How do essential oil composition and phenolic acid profile of Heracleum persicum fluctuate at different phenological stages? Food Science & Nutrition, 8(11), 6192-6206. Tabriz,. http://dx.doi.org/10.1002/fsn3.1916.
Humbal, A. & Pathak, B. (2023). Influence of exogenous elicitors on the production of secondary metabolite in plants: A review ( “VSI: secondary metabolites”). Plant Stress, 100166. http://dx.doi.org/10.1016/j.stress.2023.100166.
Jaberian, H., Piri, K. & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136(1), 237–244. http://dx.doi.org/10.1016/j.foodchem.2012.07.084
Karla. Y. (1998). handbook of reference methods for plant analysis. 320 pp. CRC Press. http://dx.doi.org/10.2135/cropsci1998.0011183x003800060050x
Khalili, M., Hasanloo, T. & Tabar, S. K. K. (2010). Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn. Plant Omics, 3(4), 109–114.
Kurkin, V. A. (2003). Medicinal plants: Saint-Mary thistle - a source of medicinals (a review). Pharmaceutical Chemistry Journal, 37, 189–202. http://dx.doi.org/10.1023/A:1024782728074
Lam, V. P., Beomseon, L., Anh, V. K., Loi, D. N., Kim, S., Kwang-ya, L. & Park, J. (2023). Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon, 9(9). http://dx.doi.org/10.1016/j.heliyon.2023.e20205
Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S. & Liu, S. (2020). Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 44, 107630. http://dx.doi.org/10.1016/j.biotechadv.2020.107630
Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I. J. & Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, 13(1), 100–111. http://dx.doi.org/10.1080/17429145.2018.1436199
Lv, Y., Marsafari, M., Koffas, M., Zhou, J. & Xu, P. (2019). optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synthetic Biology, 8(11), 2514–2523. http://dx.doi.org/10.1021/acssynbio.9b00193
Maina, S., Ryu, D. H., Bakari, G., Misinzo, G., Nho, C. W. & Kim, H. Y. (2021). Variation in phenolic compounds and antioxidant activity of various organs of african cabbage (Cleome gynandra l.) accessions at different growth stages. Antioxidants, 10(12). http://dx.doi.org/10.3390/antiox10121952
Marceddu, R., Dinolfo, L., Carrubba, A., Sarno, M. & Di Miceli, G. (2022). Milk thistle (Silybum Marianum L.) as a Novel multipurpose crop for agriculture in marginal environments: a review. Agronomy, 12(3). http://dx.doi.org/10.3390/agronomy12030729
Matkowski, A., Zielińska, S., Oszmiański, J. & Lamer-Zarawska, E. (2008). Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource Technology, 99(16), 7892–7896. http://dx.doi.org/10.1016/j.biortech.2008.02.013
Medina, A., Roldán, A. & Azcón, R. (2010). The effectiveness of Arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of Environmental Management, 91(12), 2547–2553. http://dx.doi.org/10.1016/j.jenvman.2010.07.008
Moradi, H., Ghavam, M. & Tavili, A. (2020). Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotechnology Reports, 25, e00408. http://dx.doi.org/10.1016/j.btre.2019.e00408
Muhammad, A., Feng, X., Rasool, A., Sun, W. & Li, C. (2020). Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 43, 107555. http://dx.doi.org/10.1016/j.biotechadv.2020.107555
Omezzine, F. & Haouala, R. (2013). Effect of Trigonella foenum-graecum L. development stages on some phytochemicals content and allelopathic potential. Scientia Horticulturae, 160, 335–344. http://dx.doi.org/10.1016/j.scienta.2013.06.023
Palmer, C. M., Miller, K. K., Nguyen, A. & Alper, H. S. (2020). Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 57, 174–181. http://dx.doi.org/10.1016/j.ymben.2019.11.006
Pérez-Ochoa, M. L., Vera-Guzmán, A. M., Mondragón-Chaparro, D. M., Sandoval-Torres, S., Carrillo-Rodríguez, J. C., Mayek-Pérez, N. & Chávez-Servia, J. L. (2023). Effects of annual growth conditions on phenolic pompounds and antioxidant activity in the roots of eryngium montanum. Plants, 12(18), 1–15. http://dx.doi.org/10.3390/plants12183192
Premanath, R., Sudisha, J., Devi, N. L. & Aradhya, S. M. (2011). Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenum graecum L.) leaves. In Research Journal of Medicinal Plant. 5(6). 695–705. http://dx.doi.org/10.3923/rjmp.2011.695.705
Qavami, N., Naghdi Badi, H., Labbafi, M. R. & Mehrafarin, A. (2013). A review on pharmacological, cultivation and biotechnology aspects of milk thistle (Silybum marianum (L.) Gaertn.). Journal of Medicinal Plants, 12(47), 19–37.
Rahimi, S., Hasanloo, T., Najafi, F. & Khavari Nejad, R. A. (2011). Enhancement_of_silymarin_accumulation_using_Precursor feeding in 'Silybum marianum' hairy root cultures. Plant Omics, 4(1), 34–39.
Rainone, F. (2005). Milk thistle - American Family Physician. 72(7), 1285–1288. http://www.aafp.org/afpsort.xml.
Saffaryazdi, A., Ganjeali, A., Farhoosh, R. & Cheniany, M. (2020). Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiology and Molecular Biology of Plants, 26(7), 1519–1529. http://dx.doi.org/10.1007/s12298-020-00836-9
Schrall, R. & Becker, H. (1977). Callus– und suspensionskulturen von Silybum Marianum. Planta Medica, 32(5), 27–32. http://dx.doi.org/10.1055/s-0028-1097554
Shokati, B. & Poudineh, Z. (2017). An overview of plant growth promoting rhizobacteria and their influence on essential oils of medicinal plants. Iranian Journal of Plant Physiology, 7(3), 2051–2061. http://dx.doi.org/10.22034/ijpp.2017.533559
Simpson, C. A., Geornaras, I., Yoon, Y., Scanga, J. A., Kendall, P. A., Sofos, J. N. & Dalynn Biologicals. (2014). McFarland Srandard. Journal of Food Protection, 71(3), 2. http://dx.doi.org/10.4315/0362-028x-71.3.494
Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent.
Methods in Enzymology,
299, 152-178.
http://dx.doi.org/10.1016/S0076-6879(99)99017-1
Sneath, P. H. A. (1973). Numerical taxonomy: the principles and practice of numerical classification.573 pp. San Francisco, Freeman.
Soroori, S., & Bagherian Lemraski, H. B. (2021). Effect of foliar application of spermidine , citric acid and proline on growth and flowering in
Calendula officinalis L . under drought stress. Iranian Journal of Plant and Biotechnology,
15(4). http://dx.doi.org/
10.22059/ijhst.2022.341462.555
Stamford, N. P., Freitas, A. D. S., Ferraz, D. S. & Santos, C. E. R. S. (2002). Effect of sulphur inoculated with Thiobacillus on saline soils amendment and growth of cowpea and yam bean legumes. The Journal of Agricultural Science, 139(3), 275–281. http://dx.doi.org/10.1017/S0021859602002599
Sultana, B., Anwar, F. & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167–2180. doi: 10.3390/molecules14062167
Sun, J., Li, X. & Yu, X. (2016). Antioxidant activities, total flavonoids and phenolics content in different parts of Silybum marianum L. plants. Chemical Engineering Transactions, 55, 37–42. doi: 10.3303/CET1655007.
Tong, Z., Tong, Y., Wang, D. & Shi, Y. C. (2023). Whole maize flour and isolated maizestarch for production of citric acid by Aspergillus niger: a review. Starch/Staerke, 75(3–4), 1–11. http://dx.doi.org/10.1002/star.202000014.
Tripathi, D. K., Tripathi, A., Shweta, Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., Upadhyay, R. G., Dubey, N. K., Lee, Y. & Chauhan, D. K. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in Microbiology, 8, 1–16. http://dx.doi.org/10.3389/fmicb.2017.00007
Tůmová, L., Tůma, J., Megušar, K. & Doležal, M. (2010). Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) Gaertn cultures in vitro. Molecules, 15(1), 331–340. http://dx.doi.org/10.3390
Verma, V. & Kasera, P. K. (2007). Short communication variations in secondary metabolites in some arid zone medicinal plants in relation to season and plant growth. Indian J. Plant Physiol.
Vildová, A. A., Hendrychová, H., Kubeš, J. & Tůmová, L. (2014). Influence of AgNO3 treatment on the flavonolignan production in cell suspension culture of silybum marianum (L .) Gaertn . 1(7), 2014.
Vinogradova, N., Vinogradova, E., Chaplygin, V., Mandzhieva, S., Kumar, P., Rajput, V. D., Minkina, T., Seth, C. S., Burachevskaya, M., Lysenko, D. & Singh, R. K. (2023). Phenolic compounds of the medicinal plants in an anthropogenically transformed environment. Molecules, 28(17). http://dx.doi.org/10.3390/molecules28176322
Wang, S. Y. & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146. http://dx.doi.org/10.1021/jf9908345
Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W. & Smith, P. C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of Milk thistle extract. Drug Metabolism and Disposition, 36(1), 65–72. http://dx.doi.org/10.1124/dmd.107.017566
Zboralski, A. & Filion, M. (2023). Pseudomonas spp. can help plants face climate change. Frontiers in Microbiology, 14, 1–13. http://dx.doi.org/10.3389/fmicb.2023.1198131
Zhao, J. & Sakai, K. (2003). Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 54(383), 647–656. http://dx.doi.org/10.1093/jxb/erg062