منابع
دولتی بانه، حامد؛ احمد آلی، جمال و رسولی، موسی (1398). تأثیر تنش خشکی بر برخی صفات مورفوفیزیولوژیکی در تعدادی از ارقام تجاری داخلی و خارجی انگور. پژوهشهای میوهکاری، 4(2)، 127-142.
سروری، شیما؛ اصغرزاده، احمد؛ مرجانی، علی و صمدی کاظمی، ملیحه (1401). ارزیابی تحمل برخی از ارقام انگور نسبت به تنش خشکی با استفاده از مطالعات فیزیولوژیکی و بیوشیمیایی. علوم باغبانی، 36(2)، 373-388. doi: 10.22067/jhs.2021.67767.1004
سوخت سرایی، رضا؛ عبادی، علی؛ سلامی، سید علیرضا و لسانی، حسین (1396). بررسی شاخصهای اکسیداتیو در سه رقم انگور (Vitis vinifera L.) در شرایط تنش خشکی. نشریه علوم باغبانی ایران، 48 (1)، 85-98. doi: 10.22059/ijhs.2017.106884.592
مددی، داریوش؛ عبادی، علی؛ دولتی بانه، حامد؛ عبدوسی، وحید و حدادی نژاد، مهدی (1400). پاسخهای ریختشناسی و فیزیولوژیکی نهال پیوندی انگور بیدانه سفید روی پایه ایرانی و خارجی در شرایط تنش خشکی. نشریه علوم باغبانی ایران، 52 (2)، 367-353 doi 10.22059/ijhs.2020.260522.1463
مهری، حمیدرضا؛ قبادی، سیروس؛ بانی نسب، بهرام؛ احسان زاده، پرویز و غلامی، مهدیه (1393). بررسی برخی پاسخ های فیزیولوژیک و مورفولوژیک چهار رقم انگور ایرانی(Vitis vinifera L.) به تنش خشکی در شرایط درون شیشه ای. فرآیند و کارکرد گیاهی، 3(10)، 115-126.
RERERENCES
Abbaspour, N. & Babaee, L. (2017). Effect of salicylic acid application on oxidative damage and antioxidant activity of grape (
Vitis vinifera L.) under drought stress condition.
International Journal of Horticultural Science and Technology, 4(1), 29-50.
https:doi.org. 10.22059/ijhst.2017.227384.176
Altıncı, N. T. & Cangi, R. (2019). Drought tolerance of some wine grape cultivars under in vitro conditions.
Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 36(2), 145-152.
https: doi.org doi:10.13002/jafag4633
Asadi, W., Rasouli, M., Gholami, M. & Maleki, M. (2020). Effect of some cultivars of native grapevine as rootstocks and triachenetanol on the physiology of'Bidaneh Sefid' grapevine scion (
Vitis vinifera L.), under drought stress.
Iranian Journal of Horticultural Science, 51(2). doi:
10.22059/ijhs.2019.269570.1539
Asadi, W., Gholami, M., Rasouli, M. & Maleki, M. (2019). Effect of drought stress on some physiological traits in three varieties of grapes (
Vitis vinifera L.).
Isfahan University of Technology-Journal of Crop Production and Processing, 9(3), 45-59.
doi: 10.47176/jcpp.9.3.24642
Bahrani, P., Ebadi, A., Zamani, Z. & Fatahi Moghadam, M. R. (2020). Effects of Drought Stress Levels on Some Morphological and Physiological Traits to Select the Most Tolerant ones as a Rootstock.
Journal of Plant Production Research, 27(1), 41-56. doi:
10.22069/jopp.2020.15230.2369
Bates, L. S., Waldren, R. P. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. http://dx.doi.org/10.1007/BF00018060
Bauerle, T.L., Centinari, M. & Bauerle, W.L. (2011). Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 234(5), 1045-1054. doi10.1007/s00425-011-1460-6
Bertamini, M., Zulini, L., Muthuchelian, K. & Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44, 151-154. https://doi.org/10.1007/s11099-005-0173-0
Bhargavi, B., Kalpana, K. & Reddy, J.K. (2017). Influence of water stress on morphological and physiological changes in Andrographis paniculata. International. Journal of Pure and Applied. Bioscience, 5(6), 1550-1556.
Bikdeloo, M., Colla, G., Rouphael, Y., Hassandokht, M.R., Soltani, F., Salehi, R., & Cardarelli, M. (2021). Morphological and physio-biochemical responses of watermelon grafted onto rootstocks of wild watermelon [Citrullus colocynthis (L.) Schrad] and commercial interspecific cucurbita hybrid to drought stress.
Horticulturae, 7(10), 359,1-12.
https://doi.org/10.3390/horticulturae7100359
Chance, B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. In Methods in Enzymology. Elsevier Science and Technology 2, 764-775.
Chung, P.J., Jung, H., Choi, Y.D. & Kim, J. K. (2018). Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance.
BMC Genomics, 19, 1-17.
https://doi.org/10.1186/s12864-017-4367-1
Daldoul, S., Boubakri, H., Gargouri, M. & Mliki, A. (2020). Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.
Molecular Biology Reports, 47(4), 3141-3153.
https://doi.org/10.1007/s11103-021-01122-2.
Doulati Baneh, H., Ahmadaali, J. & Rasouli, M. (2019). Effects of drought stress on some morphophysiological traits of some Iranian and foreign commercial grape varieties. Pomology Research, 4(2), 127-142. (In Persian).
Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A. & Maleki Lajayer, H. (2023). Impact of drought stress on morphological and physiological traits in some Iranian grape cultivars. Journal of Plant Process and Function, 11(47), 249-266. http://dorl.net/dor/20.1001.1.23222727.1401.11.47.11.0
Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A., Lajayer, H. M., Gohari, G. & Hano, C. (2022). Multivariate discrimination of some grapevine cultivars under drought stress in Iran.
Horticulturae, 8(10),871.
https://doi.org/10.3390/horticulturae8100871
Fanizza, G. & Ricciardi, L. (2015). Influence of drought stress on shoot, leaf growth, leaf water potential, stomatal resistance in wine grape genotypes (
Vitis vinifera L.).
VITIS-Journal of Grapevine Research, special issue, 29, 371-381
https://doi.org/10.5073/vitis.1990.29.special-issue.371-381
Ferlito, F., Distefano, G., Gentile, A., Allegra, M., Lakso, A. N. & Nicolosi, E. (2020). Scion–rootstock interactions influence the growth and behaviour of the grapevine root system in a heavy clay soil.
Australian Journal of Grape and Wine Research, 26(1), 68-78.
https://doi.org/10.1111/ajgw.12415
Flexas, J., Galmés, J., Gallé, A., Gulías, J., Pou, A., Ribas‐Carbo, M., Tomas, M. & Medrano, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement.
Australian Journal of Grape and Wine Research, 16, 106-121.
https://doi.org/10.1111/j.1755-0238.2009.00057.x
Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U. & Castellarin, S.D. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance.
Journal of Experimental Botany, 71(16), 4658-4676.
https://doi.org/10.1093/jxb/eraa245
Ghaderi, N., Talaei, A., Ebadi, A. & Lesani, H. (2010). Study of some physiological characteristics in'Sahani','Bidane-sefid'and'Farkhii'grapes during drought stress and their subsequent recovery.
Iranian Journal of Horticultural Science, 41(2), 179-188. (In Persian).
20.1001.1.2008482.1389.41.2.9.5
Gullo, G., Dattola, A., Vonella, V. & Zappia, R. (2018). Evaluation of water relation parameters in Vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar.
Journal of Plant Physiology, 226, 172-178.
https://doi.org/10.1016/j.jplph.2018.04.013
Karami, L., Ghaderi, N. & Javadi, T. (2017). Morphological and physiological responses of grapevine (
Vitis vinifera L.) to drought stress and dust pollution.
Folia Horticulturae, 29(2), 231-240.
10.1515/fhort-2017-0021.
Khandani, Y., Gholami, M., Sarikhani, H. & Chehregani Rad, A. (2022). Response of some vegetative and physiological traits of Iranian and foreign grape cultivars to drought stress.
Journal of Plant Process and Function, 11(51), 153-174.
20.1001.1.23222727.1401.11.51.10.7.7
Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. In J.S. Helebust (ed.), Handbook of Phycological Methods, 2, 56-97. Cambridge University Press, Cambridge.
Kucukbasmaci, A. & Sabir, A. (2019). Long-term impact of deficit irrigation on the physiology and growth of grapevine cv. ‘Prima’ grafted on various rootstocks. Acta Scientiarum Polonorum. Hortorum Cultus, 18(4), 57-70. doi:10.24326.asphc201946.
Lutts, S., Kinet, J.M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134
Madadi, D., Ebadi, A., Baneh, H. D., Abdousi, V. & Hadadinejad, M. (2021). Morphological and physiological responses of grafted Sultana grapevine on Iranian and American rootstocks to drought stress. Iranian Journal of Horticultural Science, 52(2), 353-367. https://doi.org/10.22059/ijhs.2020.260522.1463.(In Persian).
Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C. & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.
New Phytologist, 194(2), 416-429.
https://doi.org/10.1111/j.1469-8137.2012.04059.
Marín Ederra, D., Armengol, J., Carbonell-Bejerano, P., Escalona, J. M., Gramaje, D., Hernández- Montes, E. & Herralde, F.D. (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots.
Australian Journal of Grape and Wine Research 27
, 8–25.
https:
https://doi.org/10.1111/j.1469-8137.2012.04059.x.ajgw.12463.
Mehri, H., Ghobadi, C., Baninasab, B. & Ehsanzadeh, P. (2015). Evaluation of some physiological and morphological responses of four Iranian grapevine (Vitis vinifera L.) cultivars to drought stress under in vitro conditions. Journal of Plant Process and Function, 3(10), 115-126. (In Persian).
Molassiotis, A., Job, D., Ziogas, V. & Tanou, G. (2016). Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought.
Frontiers in Plant Science, 7,183021.
https://doi.org/10.3389/fpls.2016.00229.
Paranychianakis, N.V., Chartzoulakis, K.S. & Angelakis, A.N. (2004). Influence of rootstock, irrigation level and recycled water on water relations and leaf gas exchange of Soultanina grapevines.
Environmental and Experimental Botany, 52(2), 185-198.
https: doi.org.10.1016.j.envexpbot.2004.02.002
Pellegrino, A., Lebon, E., Simonneau, T. & Wery, J. (2005). Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Australian Journal of Grape and Wine Research, 11(3), 306-315. https://doi.org/10.1111/j.1755-0238.2005.tb00030.x
Pinheiro, C. & Chaves, M.M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882. https://doi.org/10.1093/jxb/erq340.
Prinsi, B., Negri, A.S., Failla, O., Scienza, A. & Espen, L. (2018). Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks.
BMC Plant Biology, 18,1-28.
https://doi.org/10.1186/s12870-018-1343-0.
Prinsi, B., Simeoni, F., Galbiati, M., Meggio, F., Tonelli, C., Scienza, A. & Espen, L. (2021). Grapevine rootstocks differently affect physiological and molecular responses of the scion under water deficit condition. Agronomy, 11(2),289. https://doi.org/10.3390/agronomy11020289.
Rahmani, H., Rasoli, V., Abdossi, V. & Ghanbari Jahromi, M. (2023). Ch1 (
Vitis vinifera L.) rootstock control of scion response to water stress in some commercial grapevine cultivars.
South African Journal of Enology and Viticulture, 44(1), 1-8.
https://doi.org/10.21548/44-1-5325.
Romero, P., Gil-Muñoz, R., del Amor, F.M., Valdés, E., Fernández, J.I., & Martinez-Cutillas, A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines.
Agricultural Water Management, 121, 85-101.
https://econpapers.repec.org/scripts/redir.pf?u=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.agwat.2013.01.007;h=repec:eee:agiwat:v:121:y:2013:i:c:p:85-101.
Sahitya, U. L., Krishna, M. S. R., Deepthi, R. S., Prasad, G. S., & Kasim, D. P. (2018). Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L) seedlings. BioMed Research International, 2018(1), 1605096. 10.1155/2018/1605096. PMID: 29888251; PMCID: PMC5977015.
Siddique, Z., Jan, S., Imadi, S. R., Gul, A., & Ahmad, P. (2016). Drought stress and photosynthesis in plants. Water stress and crop plants: a sustainable approach, 1, 1-11.
https:doi.org.10.1002.9781119054450.ch1.
Fatemi, A., Safari, A., Saeidi, M., & Kolahchi, Z. (2023). Effect of Some Inorganic and Organic Fertilizers’ Application and Drought Stress on Superoxide Dismutase and Peroxidase Activities and Total Soluble Protein of Bidane-Ghermez Grapevines. Journal Of Horticultural Science, 37(2), 325-336.https://doi.org/10.22067/jhs.2023.73313.1102.
Singh, S. K., Sharma, H. C., Goswami, A. M., Datta, S. P., & Singh, S. P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia plantarum, 43, 283-286.https://doi.org/10.1023/A:1002720714781.
Sivritepe, N., Yerlikaya, C., Türkan, I., Bor, M., & Özdemir, F. A. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia plantarum 52:573-576. https://doi.org/10.1007/s10535-008-0114-4.
Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current opinion in biotechnology, 21(2), 197-203. https://doi.org/10.1016/j.copbio.2010.03.002.
Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2005). Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Functional Plant Biology, 32(1), 45-53.https://doi.org/10.1071/fp04003.
Sorori, S., Asgharzade, A., Marjani, A., & Samadi, M. (2022). Evaluation of drought stress tolerance among some of grape cultivars using physiological and biochemical studies. Journal of Horticultural Science, 36(2), 373-388. https://doi.org/10.22059/ijhs.2017.236292.1276 (In Persian).
Srivastava, S., & Srivastava, M. (2014). Morphological changes and antioxidant activity of Stevia rebaudiana under water stress. American Journal of Plant Sciences, 5(22), 3417.http://dx.doi.org/10.4236/ajps.2014.522357
Soukhtesaraee, R., Ebadi, A., Salami, S. A. and Lesani, H. (2017). Evaluation of oxidative parameters in three grapevine cultivars under drought stress. Iranian Journal of Horticultural Science, 48(1), 85-98. https://doi.org/10.22067/jhs.2021.61898.0. (In Persian).
Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg 2+-induced oxidative stress in a tolerant rice mutant. Archives of environmental contamination and toxicology, 56, 723-731. https://doi.org/10.1007/s00244-008-9226-2.
Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Emanuelli, D. (2014). Rootstock type determines tolerance of C hardonnay and S hiraz to long‐term saline irrigation.
Australian Journal of Grape and Wine Research,
20(3), 496-506.
https://doi.org/10.1111/ajgw.12094.
Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J., & Miller, A. J. (2016). Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in plant science, 21(5), 418-437.
https://doi.org/10.1016/j.tplants.2015.11.008