Evaluation of the Potential for Increasing Drought Resistance in Rosemary (Rosmarinus officinalis L.) With Pre-Treatment of Ultraviolet Radiation

Document Type : Full Paper

Authors

Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorram Abad, Iran

Abstract

The pre-treatment of seeds and seedlings is an easy, low-cost, and low-risk method that improves plant growth and enhances their resistance to environmental stresses. The present research was conducted to evaluate the potential of increasing drought resistance in rosemary by seedling pre-treatment with UV radiation, as a split plots in a completely randomized design with three replications. UV radiation treatment was applied at three levels (control, UV A, and UV B) and drought stress at three levels (100±10, 75±10, and 50±10% field capacity). The results showed that leaf length, and shoot and root weight decreased with drought stress. However, internode length, plant height, shoot dry weight, leaf dry weight, leaf width, root dry weight, number of nodes, chlorophyll a, chlorophyll b, total chlorophyll, relative leaf water content, and carotenoid content decreased in the 50% field capacity treatment. Conversely, drought stress led to an increase in malondialdehyde, electrolyte leakage, proline, catalase, peroxidase, ascorbate peroxidase, total phenol, flavonoids, and antioxidant activity. UV B pre-treatment resulted in a significant increase in carotenoids, phenols, flavonoids, proline, and catalase, peroxidase, and ascorbate peroxidase activity. Activation of these stress resistance mechanisms by UV-B led to less increase in malondialdehyde and electrolyte leakage, as well as a smaller decrease in photosynthetic pigments in response to drought stress compared to untreated plants.
Therefore, it can be concluded that pre-treatment with UV-B resulted in a better physiological response of rosemary to drought stress, but it did not have a specific effect on the growth and yield of the plants.

Keywords

Main Subjects


Extended Abstract

Introduction

Water deficit has always been a limiting factor for cultivating agricultural and horticultural plants in Iran. Plants exhibit different responses to drought stress in terms of yield and production of active substances. It is essential to conduct extensive research on valuable plants and employ various treatments to understand these characteristics. Pre-treatment of seeds and seedlings is an easy, cost-effective, and low-risk method that improves plant growth and enhances their resistance to environmental stresses. This technique can be used to improve the quantity and quality of products, especially under adverse environmental conditions. Exposure of plants to ultraviolet radiation strengthens their defense systems against stress-inducing factors. Considering the significant effects of ultraviolet radiation and drought stress on plants growth and development and the lack of research on their interaction on rosemary, the present study was conducted to evaluate the potential of enhancing drought tolerance through seedling pre-treatment with ultraviolet radiation under greenhouse conditions.

 

Materials and Methods

This study was conducted as a split plots in a completely randomized design with three replications in 2021. Ultraviolet radiation treatment was applied at three levels (control, UV-A radiation, and UV-B radiation) as the main factor, and drought stress was imposed at three levels (100±10, 75±10, and 50±10% field capacity) as the second factor. Initially, rosemary seedlings were prepared and planted in 5 kg pots containing a mixture of field soil, manure, and sand in a ratio of 1:1:1. Fully established seedlings were exposed to ultraviolet radiation based on the different treatments. The UV treatments were applied daily for 4 hours during the day time (from 11 am to 3 pm) in a period of three weeks. Then pre-treated plants were subjected to drought stress according to the experimental design. At the end of the experiment, five pots from each replication were randomly selected to measure the yield-attribute, physiological and biochemical traits.

 

Result and Discussion

The results showed that UV pre-treatment (UV-A and UV-B) had no significant effect on any of the yield-attribute traits studied in rosemary. However, both UV-A and UV-B pre-treatments resulted in a reduction in the levels of chlorophyll a, chlorophyll b, and total chlorophyll. Additionally, carotenoids content increased in plants under UV-B pre-treatment, but decreased in plants under UV-A pre-treatment. Pre-treatment with UV radiation resulted in an increase in the levels of malondialdehyde, catalase, peroxidase, ascorbate peroxidase, flavonoids, and antioxidant activity in rosemary. However, the increase was much higher in plants pre-treated with UV-B compared to those pre-treated with UV-A. The levels of proline and total phenols also increased in plants pre-treated with UV-B, while UV-A treatment had no significant effect on proline and total phenol.

Leaf length, shoot weight, and root weight decreased linearly with increasing drought stress. However, internode length, plant height, shoot dry weight, leaf dry weight, leaf width, root dry weight, stem diameter, node number, chlorophyll a, chlorophyll b, total chlorophyll, and relative leaf water content showed a decrease only under severe drought stress (50% FC) compared to the control. On the other hand, malondialdehyde content and electrolyte leakage increased linearly and significantly with the intensifying of drought stress. Drought stress led to an elevation in proline content, total phenols, flavonoids, and antioxidant activity , as well as the antioxidant activity of catalase, peroxidase, and ascorbate peroxidase enzymes.

 

Conclusions

The present study showed that pre-treatment with UV radiation (UV-A and UV-B) had no significant effect on the yield-attribute of rosemary in water deficit stress conditions. However, pre-treatment with UV-B resulted in a significant increase in carotenoid, phenol, flavonoid, proline, catalase, peroxidase, and ascorbate peroxidase levels. In fact, it can be concluded that by activating these stress resistance mechanisms through UV-B pre-treatment, less damage has been inflicted on the photosynthetic pigments and plasma membrane of plants under drought stress. The UV-B induced resistance resulted in a better physiological response of plants to water deficit stress. Pre-treated rosemary plants with UV-B showed less reduction in chlorophyll a and total chlorophyll levels when exposed to drought stress. Additionally, the increase in malondialdehyde content in these plants in response to drought stress was much lower.

 

منابع  

تمدن کوشکی، لیلا و ریاست، مهرناز (1400). تاثیر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و ترکیبات فنولی گیاه دارویی رزماری. تنش های محیطی در علوم زراعی، 14(2)، 439-448.  https://doi.org/10.22077/escs.2019.2610.1682
حاجی پور، زهرا؛ مومیوند، حسن؛ شایگان‌فر، علیرضا و ابراهیمی، امین (1400). تأثیر تابش پرتو فرابنفش (UV-A و UV-B) و کاربرد ملاتونین و آسکوربیک اسید بر برخی فاکتورهای مورفو-فیزیولوژیک و فیتوشیمیایی گیاه شنبلیله (Trigonella foenum-greacum L.). نشریه پژوهش های تولید گیاهی، 29(1)، 133-154. 10.22069/JOPP.2021.18867.2785
رﺣﻴﻢزاده ﻛﺎرواﻧﺴﺮا، پریسا و رضوی، سید مهدی (1397). ﺗﻐﻴﻴﺮات ﻓﻴﺘﻮﺷﻴﻤﻴﺎﻳﻲگیاه چغندرقند (.Beta vulgaris L) در پاسخ  ﺑﻪ پرتو فرابنفشB. چغندرقند، 34(2)، 215-.226.
رستگار، مهدی؛ مومیوند، حسن؛ شایگان فر، علیرضا و رضایی نژاد، عبدالحسین (1400). تأثیر پرتو فرابنفش بر رشد، مورفولوژی و فنولوژی سه رقم گل گندم (Centaurea cyanus)‎. نشریه علوم باغبانی، 35(3)، 413-425. https://doi.org/10.22067/jhs.2021.61939.0
رضایی­فر، زینب؛ فلاحی، سیامک و قلی نژاد، اسماعیل (1397). تاثیر تنش خشکی و اشعه ماورا بنفش (UV-C) بر سیستم دفاع آنتی اکسیدانی آنزیمی و غیر آنزیمی در سه رقم گندم  (Triticum aestivum L.). فرایند و کارکرد گیاهی، 24(7)، 155-171. http://dorl.net/dor/20.1001.1.23222727.1397.7.24.16.1
زرگری، علی (1375). گیاهان دارویی. انتشارات دانشگاه تهران. جلد چهارم .
سلاح ورزی، یحیی؛ تهرانی فر، علی و گرانچیان، علی (1387). بررسی تغییرهای فیزیومورفولوژیک سبز فرش­های بومی و خارجی در تنش خشکی و آبیاری دوباره. مجله علوم و فنون باغبانی ایران، 9، 193-204.
مظفریان، ولی الله (1391). شناخت گیاهان دارویی و معطر ایران. انتشارات فرهنگ معاصر، تهران.
نژادعلیمرادی، حوا و منوچهری کلانتری، خسرو (1387). بررسی اثر پیش تیمار پرتو فرا بنفش C بر جوانه زنی بذر و برخی از پارامترهای بیوشیمیایی دو رقم گندم (Triticum aestivum L.) تحت تنش شوری. مجله علمی پژوهشی اصفهان، 36 (6)، 89-102.
نظرلی، حسین؛ احمدی، علی و هادیان جواد (1393). ارزیابی تاثیر پوتریسین در القای تحمل به خشکی و تغییر فعالیت آنزیم های ضداکسنده در گیاه بابونه آلمانی (Matricaria Chamomilla L.) ‎. علوم گیاهان زراعی ایران. 46(2)، 227-235.
نوری، فرین؛ حسینی سرقین، سیاوش و جامعی، رشید (1391). تاثیر پرتو UV-B بر فعالیت برخی آنزیم­های پاداکسایشی در سه رقم از گیاه سویا (Glycine max L. ). دومین همایش ملی تنوع زیستی و تاثیر آن بر کشاورزی و محیط زیست.  DOI: 20.1001.1.20088264.1392.5.16.3.1
 
REFERENCES
Ballare, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A., & Bornman, J. F. (2011). Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical & Photobiological Sciences, 10(2), 226-241.
Banjaw, D., Wolde, T. G., Gebre, A., & Mengesha, B. (2016). Rosemary (Rosmarinus officinalis L.) variety verification trial at Wondogenet, South Ethiopia. Med Aromat Plants (Los Angel), 5(267), 2167-0412. DOI: 10.4172/2167-0412.1000267
Bates, L.S., Waldren, R.A., & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and soil, 39, 205-207.
Beiranvandi, M., Akbari, N., Ahmadi, A., Mumivand, H., & Nazarian, F. (2022). Biochar and super absorbent polymer improved growth, yield, and phytochemical characteristics of Satureja rechingeri Jamzad in water-deficiency conditions. Industrial Crops and Products, 183, 114959. https://doi.org/10.1016/j.indcrop.2022.114959
Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power, the FRAP assay. Analytical biochemistry, 239(1), 70-76.
Chaki, M., Begara-Morales, J. C., & Barroso, J. B. (2020). Oxidative stress in plants. Antioxidants, 9(6), 481.‏
Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-755.
Chang, A., Lim, M. H., Lee, S.W., Robb, E.J. & Nazar, R.N. (2008). Tomato PAL gene family: highly redundant but strongly underutilized. Journal of Biology and Chemistry, 283, 33591-33601. DOI 10.1074/jbc.M804428200
Costa, L., Vicente, A. R., Civello, P.M., Chaves, A.R., & Martinez, G.A. (2006). UV-C Treatment Delays Postharvest Senescence in Broccoli florets. Journal of Biology and Technology, 39(2), 204-210. doi:10.1016/j.postharvbio.2005.10.012
Darras, A. I., Kostriva, A., Dimiza, K., Apostolou, M., Malamas, I., Kargakou, V., & Kartsonas, E. (2024). Improvement of Drought Resistance of Osteospermum ecklonis Plants as a Physiological and Biochemical Response to Low Doses of UV-C Irradiation. Horticulturae. https://doi.org/10.3390/horticulturae10020189
Ehsanpour, A. A., & Razavizadeh, R. (2005). Effect of UV-C on drought tolerance of alfalfa (Medicago sativa) callus. American Journal of Biochemistry and Biotechnology, 1(2), 107-110.‏ DOI: 10.3844/ajbbsp.2005.107.110
Filippou, P.,Tanou, G., Molassiotis, A., & Fotopoulos, V. (2013). Plant acclimation to environmental stress using priming agents. In N Tuteja & S Singh Gill (Eds.), Plant acclimation to environmental stress (pp. 1-27). Springer, New York.
Frohnmeyer, H., & Staiger, D. (2003). Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant physiology, 133(4), 1420-1428. https://doi.org/10.1104/pp.103.030049
García-Cela, E., Marin, S., Sanchis, V., Crespo-Sempere, A., & Ramos, A. J. (2015). Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biology, 119(1), 67-78.‏ https://doi.org/10.1016/j.funbio.2014.11.004
Hajipour, Z., Mumivand, H., Shayganfar, A., & Ebrahimi, A. (2022). Effect of ultraviolet irradiation and foliar application of some plant growth regulators on biomass and morphological characteristics of fenugreek (Trigonella foenum-graecum L.).‏ Journal of Plant Production Research, 29(1), 133-154. (In Persian). DOI: 10.22069/JOPP.2021.18867.2785
Hughes, S. G., Bryant, J. A., & Smirnoff, N. I. C. H. O. L. A. S. (1989). Molecular biology, application to studies of stress tolerance. Plants under stress. Biochemistry, physiology and ecology and their application to plant improvement, Cambridge University Press.
Jadidi, M., Mumivand, H., Nia, A. E., Shayganfar, A., & Maggi, F. (2023). UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biology, 23(1), 555.‏
Jafari, S., Mousavi-Fard, S., Rezaei Nejad, A., Mumivand, H., Sorkheh, K., Nikoloudakis, N., & Fanourakis, D. (2022). Chitosan and titanium dioxide are more effective in improving seed yield and quality in nanoparticle compared to non-structured form: a case study in five milk thistle ecotypes (Silybum marianum (L.) Gaertn.). Agronomy, 12(8), 1827. https://doi.org/10.3390/agronomy12081827
Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35, 1381-1396.‏
Kataria, S., Baroniya, S. S., Kanungo, M., & Bhaghel, L. (2014). Effect of exclusion of solar UV radiation on plants. Plant Science Today, 1(4), 224-232.  doi:10.14719/pst.2014.1.4.61
Katerova, Z. & Prinsen, E. (2008). Alterations in Indole acetic acid, Abscisic acid and aminocyclopropane carboxylic acid in pea plants after prolonged influence of low levels ultraviolet-B and ultraviolet-C radiation. Plant Physiology, 34(3-4), 377-388. https://www.researchgate.net/publication/237327856
Kovács, V., Gondor, O. K., Szalai, G., Majláth, I., Janda, T., & Pál, M. (2014). UV-B radiation modifies the acclimation processes to drought or cadmium in wheat. Environmental and Experimental Botany, 100, 122-131. https://doi.org/10.1016/j.envexpbot.2013.12.019
Kumaran, A., & Joel Karunakaran, R. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food Science and Technology, 40, 344-352. https://doi.org/10.1016/j.lwt.2005.09.011
Kumari, R., Singh, S., & Agrawal, S. B. (2009). Effects of supplemental ultraviolet-B radiation on growth and physiology of Acorus calamus L. (sweet flag). Acta Biologica Cracoviensia. Series Botanica, 51(2), 19-27.
Lichtenthaler, H. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Llorens, E., Gonzalez-Hernandez, A. I., Scalschi, L., Fernandez-Crespo, E., Camanes, G., Vicedo, B., & Garcia-Agustin, P. (2020). Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities. In M. A. Hossain, F. Liu, ... B. Huang, (Eds.), Priming-mediated stress and cross-stress tolerance in crop plants. (pp. 1-20). Academin Press. https://doi.org/10.1016/B978-0-12-817892-8.00001-5
Mahdavian, K., Ghorbanli, M., & Kalantari, K. (2008). The effects of ultraviolet radiation on some antioxidant compounds and enzymes in Capsicum annuum L. Turkish Journal of Botany, 32(2), 129-134.‏
Mc-Adam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99, 872-878. https://doi.org/10.1104/pp.99.3.872
Mc-Donald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food chemistry, 73(1),73-84. https://doi.org/10.1016/S0308-8146(00)00288-0
Mozaffarian, V. (2012). Identification of medicinal and aromatic plants of Iran. Farhang Moaser Farhang Moaser Publishers. Tehran. 10.22091/ETHC.2024.10934.1029
Mosadegh, H. (2018). Secondary metabolite regulation and UV-B tolerance mechanisms in Ocimum basilicum Var. Genovese.
Mumivand, H., Ebrahimi, A., Shayganfar, A., & Khoshro, H. H. (2021a). Screening of tarragon accessions based on physiological and phytochemical responses under water deficit. Scientific Reports, 11(1), 17839. https://doi.org/10.1038/s41598-021-97388-z
Mumivand, H., Ebrahimi, A., Morshedloo, M. R., & Shayganfar, A. (2021b). Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of Tarragon (Artemisia dracunculus L.). Industrial Crops and Products, 164, 113381. https://doi.org/10.1016/j.indcrop.2021.113381
Mumivand, H., Shayganfar, A., Tsaniklidis, G., Emami Bistgani, Z., Fanourakis, D., & Nicola, S. (2021c). Pheno-morphological and essential oil composition responses to UVA radiation and protectants: A case study in three Thymus species. Horticulturae, 8(1), 31. https://doi.org/10.3390/horticulturae8010031
Mumivand, H., Izadi, Z., Amirizadeh, F., Maggi, F., & Morshedloo, M. R. (2023). Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha× piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. Journal of Hazardous Materials, 446, 130674. https://doi.org/10.1016/j.jhazmat.2022.130674
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Nazarli, H., Ahmadi, A. & Hadian, J. (2015). Putrescine induces drought tolerance and alters the activities of antioxidant enzymes in growing chamomile plants (Matricaria Chamomilla L.). Iranian Journal of Field Crop Sciences, 46(2), 227-235. (In Persian).  10.22059/IJFCS.2015.54870
Neto, A. D. A., Prisco, J. T., Filho, J. E., Abreu, C. E. B., & Filho, E. G. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87-94. https://doi.org/10.1016/j.envexpbot.2005.01.008
Nezhad Alimoradi, H., & Manouchehri Kalantari, K.H. (2008) The effect of pre-treatment with ultraviolet radiation-C on seed germination and some biochemical parameters of two wheat cultivars under salt stress. Research Journal of University of Isfahan ", Science", 35(6),89-102. (In Persian).
Nogués, S., Allen, D. J., Morison, J. I., & Baker, N. R. (1998). Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant physiology, 117(1), 173-181.‏ https://doi.org/10.1104/pp.117.1.173
Nouri, F., Hosseini Sarghein, S., & Jamei, R. (2015). Effect of UV-B radiation on photosynthetic pigments and UV-absorbing compounds of three different soybean cultivars (Glycine max L.). Iranian Journal of Plant Physiology, 6(1), 1597-1602.‏ (In Persian).
Ouhibi, Ch., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J., Urban, L. & Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133. https://doi.org/10.1016/j.plaphy.2014.07.019
Piri, E., Babaeian, M., Tavassoli, A., & Esmaeilian, Y. (2011). Effects of UV irradiation on plants. African Journal of Microbiology Research, 5, 1710-1716. DOI: 10.5897/AJMR11.263
Poulson, M.E., Boeger, M.R.T. & Donahue, R.A. (2006). Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime. Photosynthesis Research, 90, 79-90.
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., & Luyckx, M. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal Ethnopharmacol., 72, 35-42. https://doi.org/10.1016/S0378-8741(00)00196-3
Rad, M.H., Meshkat, M.A., Soltani, M. (2009). The effects of drought stress on some saxual's (Haloxylon aphyllum) morphological characteristics. Iranian Journal of Range and Desert Research, 16, 34-43.
Rahimzadeh, P., & Razavi, S. M. (2019). Phytochemical variations in sugar beet (Beta vulgaris L) in response to ultraviolet-B radiation. Journal of Sugar Beet, 34(2).‏ (in Persian). DOI: 10.22092/jsb.2019.121369.1185
Rastegar, M., Mumivand, H., Shayganfar, A., & Rezaei Nejad, A. H. (2021). Effect of UV Radiation on Growth, Morphology and Phenology of Three Cornflower Cultivars (Centaurea cyanus). Journal Of Horticultural Science, 35(3), 413-425.‏ (In Persian).  https://doi.org/10.22067/jhs.2021.61939.0
Rezaei Far, Z., Fallahi, S., & Gholinezhad, E. (2018). The effect of drought stress and Ultraviolet on antioxidant defensive system of enzyme and non-enzyme in three varieties of wheat (Triticum aestivum L.). Journal of Plant Process and Function, 7 (24): 155-171. (In Persian). DOI20.1001.1.23222727.1397.7.24.16.1
Rezaei Nejad, A., Izadi, Z., Sepahvand, K., Mumivand, H., & Mousavifard, S. (2020). Changes in total phenol and some enzymatic and non-enzymatic antioxidant activities of rose-scented geranium (Pelargonium graveolens) in response to exogenous ascorbic acid and iron nutrition. Journal of Ornamental Plants, 10(1), 27-36.
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30(1), 105-111.‏ https://doi.org/10.2135/cropsci1990.0011183X003000010025x
Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I., & Guevara-González, R. G. (2019). Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 134, 94-102. https://doi.org/10.1016/j.plaphy.2018.06.025
Sáenz‐de la O, D., Morales, L. O., Strid, Å., Torres‐Pacheco, I., & Guevara‐González, R. G. (2021). Ultraviolet‐B exposure and exogenous hydrogen peroxide application lead to cross‐tolerance toward drought in Nicotiana tabacum L. Physiologia Plantarum, 173(3), 666-679.  https://doi.org/10.1111/ppl.13448
Salahvarzi, Y., Tehrani, A., & Gazanchian, A. (2008). Physiomorphological changes under drought stress and rewatering in endemic and exotic turfgrasses. Journal of Iranian Horticultural Science and Technology, 9, 193- 204. (In Persian). https://doi.org/10.22067/jhorts4.v1387i2.1080
Saradhi, P.P., AliaArora S., & Prasad, K. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochemical and Biophysical Research Communications, 209(1), 1-5. https://doi.org/10.1006/bbrc.1995.1461
Schmidt, A. M., Ormrod, D.P., Livingston, N.J. & Misra, S. (2000). The interaction of ultraviolet-B radiation and water deficit in two Arabidopsis thaliana genotypes. Annals of Botany, 85, 571-575. https://doi.org/10.1006/bbrc.1995.1461
Shayganfar, A., Azizi, M., & Rasouli, M. (2018). Various strategies elicited and modulated by elevated UV-B radiation and protectant compounds in Thymus species: Differences in response over treatments, acclimation and interaction. Industrial Crops and Products, 113, 298-307.‏ https://doi.org/10.1016/j.indcrop.2018.01.056
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Sinauer Associates, Sunderland, CT.
Tamadon Kooshki, L., & Riasat, M., (2021). Effect of drought stress on morphological traits, proline content and phenolic compounds of rosemary medicinal plant. Environmental Stress in Agricultural Sciences, 14(2), 439-448. (In Persian).
TT, D. T., & Puthur, J. T. (2017). UV radiation priming: A means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environmental and Experimental Botany, 138, 57-66. https://doi.org/10.1016/j.envexpbot.2017.03.003
Van Iersel, M. W., & Nemali, K. S. (2004). Drought stress can produce small but not compact marigolds. HortScience, 39(6), 1298-1301.‏ DOI: https://doi.org/10.21273/HORTSCI.39.6.1298
Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577.‏ https://doi.org/10.1016/j.plaphy.2009.02.009
Xu, X., & Tina, S. (2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biology and Technology, 49, 379-385. https://doi.org/10.1016/j.postharvbio.2008.02.003
Zhang, J., & Kirkham, M. B. (1996). Antioxidant responses to drought in sunflower and sorghum seedlings. New phytologist, 132(3), 361-373.‏  https://doi.org/10.1111/j.1469-8137.1996.tb01856.x
Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42. https://doi.org/10.1016/j.cofs.2016.02.002.