The Effect of Silver Nanoparticles Application on the Physico-Biochemical Responses of French Marigold (Tagetes patula L.) Under Salinity Stress conditions

Document Type : Full Paper

Authors

1 Department of Horticulture, Faculty of Agriculture, Lorestan university, Khorramabad, Iran

2 Department of Plant medicine, Faculty of Agriculture, Saravan university, Saravan, Iran

Abstract

Salinity is one of the main environmental stresses that affect the establishment of seedlings and the growth and yield of plants. Many studies have shown that applying silver nanoparticles improves plants' tolerance against stresses. This study aimed to investigate the effect of foliar application of silver nanoparticles on some morphological, physiological, and biochemical traits of French marigolds under salinity conditions. Therefore, a factorial experiment was conducted as a completely randomized design with four replications. Seeds were planted in pots containing soil, manure, and sand, in the greenhouse condition. Salinity treatment was applied at 4 levels (0, 25, 50, and 100 mM NaCl), and foliar application of silver nanoparticles at 4 levels (0, 10, 50, and 100 ppm. The use of silver nanoparticles in concentrations of 10 and 50 ppm in the condition of no salinity resulted in the highest Fv/Fm (0.820) and increased the morphological characteristics of French marigolds, including the number of flowers. (27.27 %), flower diameter (10.27 %) and flower life (5.75 days). Based on the results, French marigolds is sensitive to high concentrations of sodium chloride (100 mM) as the morpho-physiological characteristics were negatively affected at this level of salinity. Nevertheless, the use of silver nanoparticles in two concentrations of 10 and 50 ppm showed positive effects on reducing the adverse effects of stress, but the concentration of 100 ppm of silver nanoparticles not only did not reduce the effects of stress but also had negative effects on most the measured characteristics. Therefore, the use of silver nanoparticles in concentrations of 10 and 50 ppm can be recommended to reduce the adverse effects of salinity stress in French marigold.

Keywords

Main Subjects


Extended Abstract

Introduction

Salinity is one of the main environmental stresses that affect the establishment of seedlings and the growth and yield of green space plants. Salinity stress reduces the intensity of photosynthesis due to several factors such as dehydration of the cell membrane and as a result reduction in CO2 penetration, toxicity by salt, and reduction in the amount of CO2 due to the closing of the stomata. Salinity stress also accelerates the aging process and changes the activity of enzymes. Many studies have shown that the application of silver nanoparticles can improve plants' tolerance against abiotic stresses. This study aimed to investigate the effect of silver nanoparticles on flower traits and some physio-biochemical characteristics of French marigold under salinity stress conditions.

 

Materials and Methods

This experiment was conducted in May 2021 in a greenhouse condition. French marigold seeds (Tagetes patula L.) were planted in plastic pots containing a soil mixture including soil, rotted manure, and sand with a weight ratio of 2:1:1. The experiment was conducted as a factorial in the form of a completely randomized design with 4 replications. The first factor was salinity treatment at 3 levels (25, 50, and 100 mM NaCl, respectively equivalent to 0.067, 2.450, 5.440, and 9.520 ds/m) and the second factor was the foliar application of silver nanoparticles at 3 levels (10, 50, and 100 ppm). Some physio-biochemical traits such as flower life, chlorophyll content, proline content, enzyme activity and  Fv/Fm were measured and LSD test was used to compare the differences between treatments.

 

Results and Discussion

The results showed that in plants exposed to the different concentrations of sodium chloride the amount of all examined traits significantly decreased, except the amount of proline, which increased by increasing the concentration of sodium chloride. Application of silver nanoparticles in concentrations of 10 and 50 ppm significantly improved the evaluated parameters under salinity stress conditions. The maximum quantum efficiency of photosystem II (0.820) was obtained in both 10 and 50 ppm concentrations of silver nanoparticles. The increase in the ornamental characteristics of French marigolds including the number of flowers (27.27%), flower diameter (10.27%) and flower life (5.75 days), ) were observed under salt stress conditions.  Chlorophyl a (16.50 mg/g FW), chlorophyl b (8.06 mg/g FW), total chlorophyl (24.66 mg/g FW) and carotenoids (3.13 mg/gr FW also increased under salinity stress. According to the results, the examined enzymes showed the lowest activity in the following treatments: catalase (1.14 units/gr of FW) in the treatment without sodium chloride and foliar spraying of 50 ppm silver nanoparticles; peroxidase (1.40 units/gr of FW) in the treatment without sodium chloride and application of 10 ppm silver nanoparticles, and ascorbate (0.377 units/gr of FW) in the treatment without sodium chloride and 10 ppm silver nanoparticles. Salinity stress caused a significant decrease in the maximum efficiency of photosystem II (Fv/Fm), which is caused by the disturbance in the activity of photosystem II. The adverse effect of salinity on the efficiency of photosystem II is due to its role in inhibiting electron transfer, it also destroys the reaction centers in photosystem II. Salinity stress hurts the activity of enzymes involved in the process of photosynthesis and electron transport chains. It ultimately leads to a decrease in the maximum efficiency of photosystem II (Fv/Fm). Accumulation of toxic ions in chloroplast during salinity stress causes chlorophyll destruction by creating oxidative stress. Also, salt stress by stimulating the glutamate ligase enzyme causes more conversion of glutamate to proline and as a result, the production of chlorophyll decreases.

 

Conclusion

The results of this study indicated that salinity stress, particularly at the concentration of 100 mM sodium chloride, had undesirable effects on the physiological, biochemical, and ornamental characteristics of French marigolds. Many of these adverse effects can be alleviated by utilizing silver nanoparticles at 10 and 50 ppm concentration. Based on the results of this research, it can be stated that the application of silver nanoparticles in the form of foliar spraying at the concentration of 10 and 50 ppm can have a positive effect on the growth and yield of flowers both in salt stress and normal conditions.

اسفندیاری سبزوار، تهمینه؛ تاتاری، مریم؛ خسرویار، سوسن؛ غورات، فرشته و صالحی، معصومه (1402). تاثیر تنش شوری بر برخی ویژگی­های بیوشیمیایی سه رقم کینوا. مجله علوم باغبانی ایران، 54 (2)، 341-352.
پوربیرامی هیر، یونس؛ مهری، شیما؛ چمنی، اسماعیل و ملکی لاجایر، حسن (1400). تأثیر نانوذرات نقره بر خواص مورفولوژیکی و فیزیولوژیکی زنبق مردابی در شرایط آزمایشگاهی. مجله زیست شناسی گیاهی ایران، 13 (50)، 1-14.
حسنوند، عارفه؛ سعادتمند، سارا؛ لاری یزدی، حسین و ایرانبخش، علیرضا (1402). ارزیابی رنگدانه­های فتوسنتزی، شاخص­های فلورسانس، تبادل گاز و برخی از مواد فلاونوئیدی فعال بنفشه (Viola tricolor L.) تحت تأثیر نانوذرات بیو نقره. مجله فیزیولوژی محیطی گیاهی، 69 (1)، 109-122.
خسرویان، زهره؛ رنجبر، منیره و احدی، علی محمد (1401). بررسی اثر کیتوزان بر بیان ژن، فعالیت آنزیم p5cs و محتوای پرولین در کلزا تحت تنش شوری. مجله بیوتکنولوژی کشاورزی، 14 (4)، 181-200.
دهقان، ابوذر و رحیم ملک، مهدی (1397). اثر تنش شوری بر صفات مورفولوژیک و میزان اسانس ژنوتیپ‌های بومادران هزاربرگ ایرانی و خارجی. علوم و فنون کشت­های گلخانه­ای، 9 (2)، 37-23.‏
رجایی، مجید (1391). اثر متقابل تنش شوری و سولفات آمونیوم بر رشد و غلظت عناصر غذایی گیاه پرتقال والنسیا پیوندی روی لیمو. نشریه علوم باغبانی ایران، 53 (2)، 321-331.
روزبهانی، فاطمه؛ موسوی فرد، صادق و رضایی­نژاد، عبدالحسین (1399). تأثیر پرولین بر برخی ویژگی­های فیزیولوژیکی و بیوشیمیایی دو رقم گل حنا تحت تنش شوری. نشریه علوم باغبانی ایران، 51 (3)، 537-550.
زارع، ضرغام؛ پیشکار، لیلا؛ ایرانبخش، علیرضا و طالعی، داریوش (1391). اثرات نانوذرات نقره بر رشد، ظرفیت تبادل گاز و عملکرد فتوسیستم II در گیاهان خرفه. مجله تحقیقات گیاهی (مجله زیست شناسی ایران)، 35 (4)، 799-809.
شاه­ولی­بر، آسیه و زاده بهابادی، اسمعیل (1398). تاثیر نانوذرات نقره سنتز شده به روش زیستی بر رشد، شاخص‌های فیزیولوژیکی و بیوشیمیایی گیاه بادرنجبویه. فرآیند و کارکرد گیاهی، 8 (32)، 34-19.
شهرکی، هانیه؛ مهدی نژاد، نفیسه و فاخری، براتعلی (1398). تاثیر نانوذرات نقره سنتز شده از عصاره گیاهی بر برخی ویژگی‌های مورفولوژیکی و خواص آنتی­اکسیدانی کنگر فرنگی (Cynara scolymus L) تحت تنش شوری. تولیدات گیاهی، 44 (1)، 114-103.
فیضی، حسن؛ عظیمی، ریحانه و کیانیان، محمدکیان (1399). پژوهش­های نانوتکنولوژی گیاهان زراعی، غیرزراعی، دارویی و زینتی. انتشارات تربت حیدریه: انتشارات دانشگاه تربت حیدریه.
قاسمی، وحید؛ احتشام نیا، عبدالله؛ رضایی نژاد، عبدالحسین و مومیوند، حسن (1402). تأثیر سطوح مختلف تنش شوری و رقم بر خصوصیات بیوشیمیایی و فیزیولوژیکی و غلظت عناصر غذایی قرنفل. مجله پژوهش­های تولید گیاهی، 30 (1)، 1-19.
کریمی جعفری، آزاده؛ و حسین زاده نمین، منیر (1399). تأثیر شوری و نانونقره بر رشد و بیوشیمی بنه زعفران در شرایط خیساندن. زیست شناسی کاربردی، 29 (1)، 159-174.
ناصری مقدم، علی؛ بیات، حسن؛ امینی فرد، محمدحسین و مرادی نژاد، فرید (1399). اثر تنش­های خشکی و شوری بر کیفیت گل، تغییرات زیست شیمیایی و غلظت یون­ها در گل نرگس شهلا. نشریه پژوهش­های تولید گیاهی (علوم کشاورزی و منابع طبیعی)، 27 (1)، 221-207.
REFERENCES
Abou-Zeid, H., & Ismail, G. (2018). The Role of Priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L to salt stress. Egyptian Journal of Botany, 58(1), 73-85.
Aly, M. A., Zabat, R. M. O., & Gaber, M. K. (2023). The efficiency of the foliar application using silica and silver nanoparticles on Duranta erecta under salinity conditions. Egyptian Academic Journal of Biological Sciences, H. Botany, 14(1), 55-68.
Bahadoran, M., & Salehi, H. (2015). Growth and flowering of two tuberoses (Polianthes tuberosa L.) cultivars under deficit irrigation by saline water. Journal of Agricultural Science and Technology, 17(2), 415-426.
Bates, L. S., Waldren, R.P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
Bondarian, F., Omidi, M., & Torabi, S. (2013). The effect of nano elicitors on alkaloid production of Papaver somniferum in suspension cell culture. [MSc thesis Azad University of Tehran, Iran]. (In Persian).
Broetto, F., Monteiro Duarte, H., & Lüttge, U. (2007). Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. Journal of Plant Physiology, 164, 904–912.
Chance, B., & Maehly, A.C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2( 764-775).
Chrysargyris, A., Tzionis, A., Xylia, P., & Tzortzakis, N. (2018). Effects of salinity on tagetes growth, physiology, and shelf life of edible flowers stored in passive modified atmosphere packaging or treated with ethanol. Frontiers in Plant Science, 9,1765. Doi: 10.3389/fpls.2018.01765.
Dehghan, A., & Rahim Malek, M. (2018). Effect of salinity stress on morphological traits and essential oil content of Iranian and foreign yarrow (Achillea millefolium) genotypes. Journal of Science and Techniques of Greenhouse Cultivation, 9(2), 23-38. (In Persian).
Dewez, D., Goltsev, V., Kalaji, H. M., & Oukarroum, A., (2018). Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Current Plant Biology, 16, 15–21.
Dogan, M. (2011). Antioxidative and proline potentials as a protective mechanism in soybean plants under salinity stress. African Journal of Biotechnology, 10(32), 5972-5978.
Esfandyari-Sabzevar, T., Tatari, M., Khosroyar, S., Ghorat, F., & Salehi, M. (2023). Effect of salinity stress on some biochemical characteristics of three Quinoa varieties. Iranian Journal of Horticultural Science, 54(2), 341-352. DOI: http//doi.org/10.22059/IJHS.2023.350720.2071. (In Persian).
Faizi, H., Azimi, R., & Kayanian, M. K. (2019). Nanotechnology research on crops, non-crops, medicinal and ornamental plants. Torbat Heydarieh Publications: Torbat Heydarieh University, page 213. (In Persian).
Funk, V. A., Chan, R., & Holland, A. (2007). Cymbonotus (Compositae: Arctotideae, Arctotidinae): an endemic Australian genus embedded in a southern African clade. Botanical Journal of the Linnean Society, 153(1), 1-8.
Ghasemi, V., Ehtesham Nia, A., Rezaei Nejad, A., & Mumivand, H. (2023). The effect of different levels of salinity stress and cultivar on biochemical and physiological characteristics and nutrient concentration of William Sweet (Dianthus barbatus). Journal of Plant Production Research, 30 (1), 1-19. (In Persian).
Ghorbanli, M., & Kiapour, A. (2012). Copper-induced changes on pigments and activity of non-enzymatic and enzymatic systems in Portulaca oleracea L. Iranian Journal of Medicinal and Aromatic Plants, 28(2), 235-247.
Hassanvand, A., Saadatmand, S., Lari Yazdi, H., & Iranbakhsh, A. R. (2023). Evaluation of photosynthetic pigments, fluorescence indexes, gas exchange, and some active flavonoid substances Pansy (Viola tricolor L.) under the effect of Bio-Silver Nanoparticles. Journal of Plant Environmental Physiology, 69(1), 109-122. (In Persian).
Helali Soltanahmadi, F., Amerian, M. R., Ghiyasi, M., & Abbasdookht, H. (2018). Effects of seed priming on yield, yield components, and concentration of mineral phosphorus under drought stress in Calendula officinalis L. Iranian Journal of Medicinal and Aromatic Plants Research, 34(4), 565-578.
Jaleel, C. A., Gopi, R., Kishorekumar, A., Manivannan, P., Sankar, B., & Panneerselvam. (2008). Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiologiae Plantarum, 30(3), 287-295.
‎Karimi Jafari, A., & Hosseinzadeh Namil, M. (2020). The effect of salinity and nanosilver on growth and biochemistry of saffron corms in soaking conditions. Applied Biology, 29(1), 159-174. doi: 10.22051/jab.2016.2474. (In Persian).
Khalofah, A., Kilany, M., & Migdadi, H. (2021). Phytostimulatory influence of comamonas testosterone and silver nanoparticles on Linum usitatissimum L. under salinity stress. Plants, 10(4), 790.
Khan, M. A., Shirazi, M. U., Khan, M. A., Mujtaba, S. M., Islam, E., Mumtaz, S., Shereen, A., Sharma, V.K., Yngard, R.A., & Lin, Y. (2008). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 26, 2027-2038.
Khan, I., Awan, S. A., Rizwan, M., Akram, M. A., Zia-ur-Rehman, M., Wang, X., & Huang, L. (2023). Physiological and transcriptome analyses demonstrate the silver nanoparticles mediated alleviation of salt stress in pearl millet (Pennisetum glaucum L). Environmental Pollution, 318, 120863.‏ https://doi.org/10.1016/j.envpol.2022.120863.
Khosravian, Z., Ranjbar, M., & Ahadi, A. M. (2022). Investigating the effect of chitosan on gene expression, p5cs enzyme activity, and proline content in rapeseed (Brassica napus L.) under salt stress. Journal of Agricultural Biotechnology, 14(4), 181-200. DOI: 10.22103/jab.2022.18349.1348. (In Persian).
Koca, H., Bor, M., Ozdemir, F., & Türkan, I. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes, and proline content of sesame cultivars. Environmental and Experimental Botany, 60, 344-351.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, (350-382).
Mac-Adam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase Activity in the leaf elongation zone of tall fescue. I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence: a
Practical guide. Journal of Experimental Botany, 51, 659–668.
Mosa, K., Ismail, A., & Helmy, M. (2017). Introduction to Plant Stresses. In Plant Stress Tolerance, (pp. 1-19). Springer.  https://doi.org/10.1007%2F978-3-319-59379-1_1.
Najafi, S., & Jamei, R. (2014). Effect of silver nanoparticles and Pb (NO3) 2 on the yield and chemical composition of mung bean (Vigna radiata). Journal of Stress Physiology & Biochemistry, 10(1), 316-325.
Nakano, V., & Asada, K. (1981). Hydrogen Peroxide is scavenged by ascorbate–specific Peroxidase in Spinach chloroplasts. Plant Cell Physiology, 22, 867-880.
Naseri Moghadam, A., Bayat, H., Amini Fard, M. H., & Moradinejad., F. (2019). Effect of drought and salinity stress on flower quality, biochemical changes and ion concentration in Shahla narcissus flower. Plant Production Research Journal (Agricultural Sciences and Natural Resources), 27(1), 221-207. (In Persian).
Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981.
Parida, A. K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.
Pourbeyrami Hir, Y., Mehri, S., Chamani, E., & Maleki Lajayer, H. (2021). The effect of silver nanoparticles on morphological and physiological properties of Iris pseudacorus under in vitro conditions. Iranian journal of plant biology, 13(50), 1-14. (In Persian).
Rahdari, P., & Hoseini, S. M. (2012). Drought stress: A review. International Journal of Agronomy and Plant Production, 3, 443 -6.
Rajaie, M. (2022). The interaction of salinity stress and ammonium sulfate on growth and nutrient concentration in Valencia orange plant grafted on Lemon. Iranian Journal of Horticulture Science, 53(2), 321-331 (In Persian).
Rastogi, A., Zivcak, M., Tripathi, D. K., Yadav, S., & Kalaji, H. M. (2019). Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica, 57(1), 209- 216.
Romagnoli, C., Mares, D., Fasulo, M. P., & Bruni, A. (2005). Antifungal effects of α‐terthienyl from Tagetes patula on five dermatophytes. Phytotherapy Research, 8(6), 332-336.
Rozbahani, F., Mousavi Fard., S., & Rezai-Najad., A. (2019). Effect of proline on some physiological and biochemical characteristics of two varieties of henna flower under salt stress. Horticultural Sciences of Iran, 51(3), 537-550. (In Persian).
Sabertanha, B., Fakheri, B., Mahdinezhad, N., & Alizade, Z. (2017). Effects of silver nanoparticles elicitor and drought stress on the expression of beta-carotene hydroxylase (bch) gene on the yield of saffron carotenoid (Crocus sativus L.). Crop Biotechnology, 17, 1–13.
Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83-96.
Shahraki, H., Mahdi Nezhad, N., Fakheri, B., & Haddadi, F. (2021). The effect of synthesis nanosilver by plant extract on morphological and antioxidant properties of Artichoke (Cynara scolymus L.) under salinity stress. Plant Productions, 44(1), 103-114. (In Persian).
Shahvalibar, E., & Esmailzadeh Bahabadi, S. (2019). The effect of biologically synthesized silver nanoparticles on the growth, physiological, and biochemical indicators of lemongrass. Journal of Plant Process and Function, 8(32), 19-34. (In Persian).
Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P., & McManus, M. T. (2010). Effect of salt stress on growth, inorganic ion and proline accumulation in (Thai aromatic) rice, Khao Dawk Mali 105, callus culture. African Journal of Biotechnology, 9(2), 145-152.
Theriappan, P., Gupta, A. K., & Dhasarrathan, P. (2011). Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. Journal of Applied Sciences and Environmental Management, 15, 251-255.
Vishwakarma, K., Shweta, Upadhyay, N., Singh, J., Liu, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., Tripathi, D. K., & Sharma, S. (2017). Differential phytotoxic impact of plant-mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Frontiers in. Plant Science, 8, 1501.
Wahing, I., Van, W., Houba, V. J. G., & Vander, J. J. (1989). Soil and plant analysis: a series of syllabi. Plant analysis procedure. Wageningen Agriculture University.
Zare, Z., Pishkar, L., iranbakhsh, A., & Talei, D. (2022). Effects of silver nanoparticles on the growth, gas exchange capacity and photosystem II performance in purslane (Portulaca oleracea L.) plants. Journal of Plant Research (Iranian Journal of Biology), 35(4), 799-809. (In Persian).
Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y., & Yan, Z. (2021) Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7, 342. doi.org/10.3390/horticulturae7100342.