Effects of Physical and Chemical characteristics of Different Casing Soils on Quantitative and Qualitative Characteristics of Button Mushroom (Agaricus bisporus)

Document Type : Full Paper

Authors

1 Department of Soil Science, College of Agriculture, Shahrekord University, Shahrekord, Iran.

2 Director of Development and Research of Negin Fasl Agro-Industry Company, Shahrekord, Iran.

3 Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.

Abstract

Casing soil is an important input in the production of the button mushroom, which is usually prepared from non-renewable organic sources (e.g., peat). In order to introduce a suitable alternative to peat, and also the effect of different casing soils on quantitative and qualitative characteristics of button mushroom this study was carried out.
The reaserch was conducted in a completely randomized design with 20 treatments and three replications on an industrial scale in Negin Fasl Agro-industry Company. In this respect, different alternative materials, such as mixed cow manure, spent mushroom compost (SMC), cow manure vermicompost, and SMC vermicompost in different volume ratios with peat )preaperd from north of Iran, north peat) were utilized to produce different casing soil, which used in the process of button mushroom production. Commercial and total yield traits, biological efficiency, piece weight, dry matter percentage, and mushroom earliness were determined in the applied treatments.
The results showed that there was a significant difference in yield, biological efficiency, dry matter percentage, and earliness traits among the treatments. The highest total yield and biological efficiency were related to the mixture of north peat and cow manure vermicompost (50% and 50%v/v), and the mixture of north peat and SMC vermicompost (50% and 50%v/v), with 16 kg/m2 yield., In cow manure (100%), and the mixture of north peat and cow manure (25% and 75%v/v) treatments no growing mycelial occured. The lowest total yield was achieved from north peat (100%), with 9.8 kg/m2.
Overall, the results showed that replacement of cow manure vermicompost, and SMC vermicompost with peat and conventional casing soil treatments could lead to save the costs, and preservation of natural resources.

Keywords

Main Subjects


Extended Abstract

Introduction

    Casing soil is an important input in the production of the button mushroom, which is usually prepared from non-renewable organic sources (e.g., peat). In order to introduce a suitable alternative to peat, and also invastigate the effects of different casing soils on quantitative and qualitative characteristics of button mushroom this study was carried out.

 

Materials and Methods

This study was conducted in a completely randomized design with 20 treatments and three replications on an industrial scale in Negin Fasl Agro-industry Company. In this respect, different alternative materials, such as mixed cow manure, spent mushroom compost (SMC), cow manure vermicompost, and SMC vermicompost in different volume ratios (25, 50, 75 and 100%) with peat (prepeared from north of Iran, north peat) were utilized to produce different casing soil treatments were used in the process of button mushroom production. Commercial and total yield traits, biological efficiency, piece weight, dry matter percentage, and mushroom earliness were determined in the applied treatments. In all the statistical analyses, related to piece weight, earliness, and dry matter percentage, the treatments that lacked mycelium growth and had zero yield were excluded. However, in evaluating the characteristics of commercial yield, total yield and biological efficiency, the zero yield of these treatments was considered and all the statistical analyses were done considering these treatments. The comparison of means was done by Duncan's multiple range test with SAS (9-4) statistical software. Casing soil properties were determined as following: soil pHwas measured in saturated paste and EC of saturated paste extract determined with electrical conductivity meter. The amount of organic matter by burning in the furnace, the wet bulk density with a graduated cylinder, particle density with pycnometer, the amount of soil moisture in matric suctions of 0, 10, 50 and 100 hPa were measured with a sand box. Also, porosity (POR), air after irrigation (AIR), easily available water (EAW), water buffering capacity (WBC), water holding capacity(WHC), air capacity (AC), relative field capacity (RFC) were calculated. The obtained data were standardized, then principal component analysis and clustering of treatments were done.

 

Results and Discussion

The results showed that there was a significant difference in yield and biological efficiency, dry matter percentage, and earliness traits among the treatments. The highest total yield and biological efficiency were related to the mixture of north peat and cow manure vermicompost (50% and 50%v/v), and the mixture of north peat and SMC vermicompost (50% and 50%v/v), with 16 kg/m2 yield. In cow manure (100%), and the mixture of north peat and cow manure (25% and 75%v/v) treatments no growing mycelial occured. The lowest total yield was achieved from north peat (100%), with 9.8 kg/m2. The relative field capacity showed a strong positive correlation with the yield of the mushroom. Examining the values of the relative field capacity in the treatments with the maximum total yield indicated that its optimal range lies between 0.81 and 0.84. The maximum yield of the mushroom was produced in the optimal range of total air capacity to total soil porosity (0.16-0.19).

 

Conclusion

      Overall, the results showed that replacing cow manure vermicompost, and SMC vermicompost with peat and conventional casing soil could lead to savings the costs in mushroom productionn, and also preserve natural resources. Considering the importance of balance between water and air in mushroom cultivation, the relative field capacity can be used in investigations related to the characteristics and quality of the casing soil.

پیوست، غلامعلی؛ شاهبداغی، جواد و صدقی مقدم، مجید (1388). بررسی استفاده از هیدروژل در خاک پوششی قارچ دکمه­ای (Agaricus bisporus L. ). مجله علوم باغبانی ایران، 40(1)، 23-28.
حسینی، سیدحسن؛ رفیعی الحسینی، محمد و برزگر، رحیم (1396). آثار جایگزینی ورمی­کمپوست و پرلیت با پیت به عنوان خاک پوششی بر رشد و عملکرد قارچ دکمه­ای(Agaricus bisporus). به زراعی کشاورزی، 19(4)، 837-852.
رضایی، شیرین (1389). امکان جایگزینی خاک پوششی پیت با کمپوست مصرف شده درتولید قارچ خوراکی دکمه ای سفید. پایان­نامه کارشناسی ارشد به راهنمایی امیر لکزیان. مشهد: دانشگاه فردوسی مشهد. دانشکده کشاورزی.
رمضان، داریوش و سیاه سر، براتعلی (1389). ارزیابی تاثیر انواع خاک پوششی بر برخی ویژگی­های کمی و کیفی قارچ دکمه­ای (Agaricus bisporus L.). مجله علوم باغبانی ایران، 41(4)، 393-399.
سلطانی، افشین (1390). کاربرد نرم­افزار SAS در تجزیه­های آماری. ویراست دوم. مشهد: انتشارات جهاد دانشگاهی مشهد.
شیرانی، حسین (1396). شبکه­های عصبی مصنوعی با رویکرد کاربرد در علوم کشاورزی و منابع طبیعی. رفسنجان: انتشارات دانشگاه ولی­عصر رفسنجان.
فارسی، محمد و پوریان­فر، حمیدرضا (1390). پرورش و اصلاح قارچ خوراکی تکمه­ای سفید. مشهد: انتشارات جهاد دانشگاهی مشهد.
کاظمی زهرانی، نجمه (1398). جایگزینی پیت به عنوان خاک پوششی قارچ دکمه­ای با استفاده از پسماندهای آلی مختلف. پایان­نامه کارشناسی ارشد به راهنمایی حسین شریعتمداری و حمیدرضا عشقی­زاده. اصفهان: دانشگاه صنعتی اصفهان. دانشکده کشاورزی. 80 ص.
محمدی گل­تپه، اابراهیم و پورجم، ابراهیم (1383). اصول پرورش قارچهای خوراکی. چاپ چهارم. تهران: دفترنشرآثارعلمی دانشگاه تربیت مدرس.
واروی­پور، مریم (1389). خاکشناسی عمومی. تهران: انتشارات دانشگاه پیام نور.
وحید آفاق، هایده (1376). بازیافت کامپوست برگشتی و استفاده از آن به عنوان خاک پوششی. پایان­نامه کارشناسی ارشد به راهنمایی حسین ریاحی. تهران: دانشگاه شهید بهشتی. دانشکده علوم. 142 ص.
 
REFERENCES
Andrejko, M. J., Fiene, F., & Cohen, A. D. (1983). Comparison of ashing techniques for determination of the inorganic content of peats. In Testing of peats and organic soils. (P.M. Jarrett, Ed.) ASTM International.
Ayyub, C. M., Khan, N. A., Rehman, A., Pervez, M. A., Akhtar, N., & Ullah, I. (2014). Evaluation of various casing materials for enhancing growth and yield of button mushroom (Agaricus bisporus Lange). Pakistan Journal of Phytopathology, 26(1), 125–132.
Banitalebi, G., Mosaddeghi, M. R., & Shariatmadari, H. (2019). Feasibility of agricultural residues and their biochars for plant growing media: Physical and hydraulic properties. Waste Management, 87, 577-589. https://doi.org/10.1016/j.wasman.2019.02.034.
Bokaria, K., Balsundram, S. K., Bhattarai, I., & Kaphle, K. (2014). Commercial production of milky mushroom (Calocybe indica). Merit Research Journal of Agricultural Science and Soil Sciences, 2(2), 032-037.
Burton, K. S., & Noble, R. (1993). The influence of flush number, bruising and storage temperature on mushroom quality. Postharvest Biology and Technology, 3(1), 39-47.
Choudhary, D. K., Agarwal, P. K., & Johri, B. N. (2009). Characterization of functional activity in composted casing amendments used in cultivation of Agaricus bisporus (Lange) Imbach. Indian Journal of Biotechnoly, 8, 97-109.
Choudhary, D.K. (2011). First preliminary report on isolation and characterization of novel Acinetobacter spp. in casing soil used for cultivation of button mushroom, Agaricus bisporus (Lange) Imbach. International Journal of Microbiology, 2011. doi:10.1155/2011/790285
De la Fuente, M., Gordillo, R. M., & Santa Clara, U. C. C. E. (2003). Developing technology to grow mushrooms from recycled urban waste and food scraps-paper waste (Vermicompost). UCCE Santa Clara Country. Specialty Crops Research Program, Annual Report.
Dhar, B.L. (1994). Mushroom composting for Agaricus bisporus/bitorquis. In Nair MC, Gokulapala C, ADNA. 1L. Eds. Advances in Mushroom Biotechnology (pp. 489-490). Jodhpur: Scientific Publishers.
Dias, E. S., Zied, D. C., & Pardo-Gimenez, A. (2021). Revisiting the casing layer: Casing materials and management in Agaricus mushroom cultivation. Ciência e Agrotecnologia, 45. https://doi.org/10.1590/1413-70542021450001R21.
Eren E., Boztok, K. (2013). Possibility of using different wastes as casing material in Agaricus bisporus mushroom cultivation. Iğdır University, Journal of the Institute of Science and Technology, 3(1), 9-16. https://doi.org/10.29136/mediterranean.971682.
FAO (2019). Food and Agriculture Organization of the United Nations Agriculture Statistics. http://www.fao.org/faostat/en/#data/QC. Accessed May 29, 2020.
Farsi, M., & Pourianfar, H. (2011). Cultivation and breeding of the white button mushroom, 2rd ed. Mashhad: Jahad Daneshgahi of Mashhad Press. (In Persian).
Galli, E., Tomati, U., Grappell, A., & Dilena, G. (1990). Effect of Earthworm casts on protein synthesis in Agaricus bisporus. Biology and Fertility of Soils, 9, 290-291.
Ghasemi, K., Emadi, M., Bagheri, A., & Mohammadi, M. (2020). Casing material and thickness effects on the yield and nutrient concentration of Agaricus bisporus. Sarhad Journal of Agriculture, 36(3), 958-965.
Giménez, A. P., & Pardo-González, J. E. (2008). Evaluation of casing materials made from spent mushroom substrate and coconut fibre pith for use in production of Agaricus bisporus (Lange) Imbach. Spanish Journal of Agricultural Research, 6(4), 683-690. https://doi.org/10.5424/sjar/2008064-361.
Gupta, M., Yang, J., & Roy, C. (2002). Density of softwood bark and softwood char: procedural calibration and measurement by water soaking and kerosene immersion method. Fuel, 81(10), 1379-1384. https://doi.org/10.1016/S0016-2361(02)00043-1.
Gulser, C. & Peksen, A. (2003). Using tea waste as a new casing material in mushroom (Agaricus bisporus) cultivation. Bioresource Technology, 88, 153-156. https://doi.org/10.1016/S0960-8524(02)00279-1.
Hayes, W. A. (1981). Interrelated studies of physical, chemical and biological factors in casing soils and relationships with productivity in commercial culture of Agaricus bisporus Lange (Pilat). In: NG Nair (Ed.) Proceedings of the Eleventh International Scientific Congress on the Cultivation of Edible Fungi, Australia, AD Clift. Sydney.
Hosseini, H., Rafieiolhossaini, M. & Barzegar, R. (2017). Effects of the replacing vermicompost and perlite instead of peat as casing soil on growth and yield of mushroom (Agaricus bisporus). Crops Improvement (Journal of Agricultural Crops Production), 19 (4), 832-852. https://doi.org/10.22059/jci.2018.220952.1583. (In Persian).
Kalberer, P. P. (1990). Influence of the water potential of the casing soil on crop yield and on dry-matter content, osmotic potential and mannitol content of the fruit bodies of Agaricus bisporusJournal of Horticultural Science, 65(5), 573-581. https://doi.org/10.1080/00221589.1990.11516095.
Kazemi Zahrani, N. (2019). The feasibility of casing soil production for cultivation of Agricus bisporus using some organic wastes. MSc Thesis. Isfahan: Isfahan University of Technology, College of Agriculture. (In Persian).
Keestrea, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B. & Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL, 2, 111-128. https://doi.org/10.5194/soil-2-111-2016.
Kerketta, A., Pandey, N.K., Singh, H.K. & Shukla, C.S. (2018). Effect of straw substrates and casing materials on yield of milky mushroom (Calocybe indica P&C.) strain CI-524. International Journal of Current Microbiology and Applied Sciences, 7(2), 317–322. https://doi.org/10.20546/ijcmas.2018.702.041.
Kim, Y. G., Lee, B. J., Lee, S. G., & Lee, B. E. (2018). Study on new casing materials of Agaricus bisporus. Journal of Mushroom, 16(3), 147–154.
Martos, E.T., Zied, D.C., Junqueira, P.P.G., Rinker, D.L., Dasilva, R., Toledo, R.C.C. & Dias, E.S. (2017). Casing layer and effect of primordia induction in the production of Agaricus subrufescens mushroom. Agriculture and Natural Resources, 51(4), 231–234. https://doi.org/10.1016/j.anres.2017.04.003.
Mohammadi Goltapeh, E., Pourjam, E. (2004). Principle’s of mushroom cultivation. 4rd Ed. Tehran: Tarbiat Modarres University Press (In Persian).
Nirupa, K. & Kudada, N. (2018). Effect of casing soil thickness on growth and yield of milky mushroom (Calocybe indica). Journal of Pharmacognosy and Phytochemistry, 7(2), 3619-3623.
Noble, R., Dobrovin-Pennington, A., Evered, C.E. & Mead, A. (1999). Properties of peat-based casing soils and their influence on the water relations and growth of the mushroom (Agaricus bisporus). Plant and Soil, 207(1), 1–13.
Noble R., Fermor TR., Lincoln S., Dobrovin-Pennington A., Evered C., Mead A. & Li R. (2003) Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia, 95(4), 620-629. https://doi.org/10.1080/15572536.2004.11833066.
Owaid, M. N., Barish, A., & Shariati, M. A. (2017). Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agriculture, 2(1), 537-543. https://doi.org/10.1515/opag-2017-0056.
Pathak, V. N., Yadav, N., & Gaur, M. (2000). Mushroom production and processing technology. Jodhapur: Agrobios.
Pardo, A., De juan, A. J., Pardfo, J., & Pardp, J. E. (2004). Assessment of different casing materials for use as peat alternatives in mushroom cultivation. Evaluation of quantitative and qualitative production parameters. Spanish Journal of Agricultural Research. 2(2), 267-272.
PardoGiménez, A., Pardo, J. E., & Zied, D. C. (2017). Casing materials and techniques in Agaricus bisporus cultivation. In Edible and medicinal mushrooms: Technology and applications (pp.149-174). New York: Wiley Blackwell. https://doi.org/10.1002/9781119149446.ch7.
Polat, E., & Ömer, Ö. N. E. L. (2021). An alternative new casing material in the production of Agaricus bisporusMediterranean Agricultural Sciences, 34(3), 261-266. https://doi.org/10.29136/mediterranean.971682.
Peivast, Gh. A., Shahbedaghi, G. & Sedghi Moghadam, M. (2009). The effect of hydrogel in casing soil for button mushroom (Agaricus bisporus L.). Iranian Journal of Horticaltural Sciences, 40(1), 23-28. http://dorl.net/dor/20.1001.1.2008482.1388.40.1.3.0. (In Persian).
Ramezan, D., Siahsar, B. (2011). Evaluation of different casing soils on quantitative and qualitative characteristics of button mushroom (Agaricus bisporus L.). Iranian Journal of Horticultural Science, 41(4), 393-399. http://dorl.net/dor/ 20.1001.1.2008482.1389.41.4.10.0. (In Persian).
Raviv, M., Lieth, J.H. (2008). Soilless culture: Theory and practice. 1rd ed. London: Elsevier
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In Sparks, D. L.; Page, A. L.; Helmke, P. A.; Loeppert, R. H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner, M. E. (Eds). Methods of Soil Analysis. Part 3. 3rd ed. (pp. 417- 436). Madison: American Society Agronomy. https://doi.org/10.2136/sssabookser5.3.c14.
Riley, J. L. (1986). Laboratory methods for testing peat (p25). Ontario peatland inventory project, Sudbury.
Rezaei, Sh. (2011). The possibility of peat replacement with spent mushroom compost in Agaricus bisporus production. MSc Thesis. Mashhad: Ferdowsi University of Mashhad, Faculty of Agriculture. (In Persian).
Reynolds W.D., & Topp G.C. (2007). Soil water desorption and imbibition: Tension and pressure techniques. In Carter M.R., & Gregorich E.G. (ed.), Soil Sampling and Methods of Analysis. 2rd ed. (pp. 981-997). Boca Roton: Canadian Society of Soil Science, Taylor & Francis.
Reynolds, W. D., Drury, C. F., Yang, X. M., & Tan, C. S. (2008). Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146(3-4), 466-474. https://doi.org/10.1016/j.geoderma.2008.06.017.
Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., & Yang X.M. (2009). Use of indicators and pore volume function characteristics to quantify soil physical quality. Geoderma, 152, 252–263. https://doi.org/10.1016/j.geoderma.2009.06.009
Sassine, Y.N., Ghora, Y. Kharrat, M. Bohme, M & Abdel-Mawgoud, A.M.R. (2005). Waste paper as an alternative for casing soil in mushroom (Agaricus bisporus) production. Journal of Applied Sciences Research, 1(3), 277–284.
Sassine, Y.N. Abdel-Mawgoud, A.M.R., Ghora Y. & Bohme, M. (2007). Effect of different mixtures with waste paper as casing soil on the growth and production of mushroom (Agaricus bisporus). Australian Journal of Basic and Applied Sciences, 1(2), 96–104.
Shirani, H. (2017). Artificial neural networks with an application in agriculture and natural resource science. Rafsanjan: Vali-e-Asr University of Rafsanjan Press. (In Persian).
Soltani, A. (2011). Application of SAS in statistical analysis. 2rd ed. Mashhad: Jahad Daneshgahi of Mashhad Press. (In Persian).
Stamets, P., & Chilton, J. S. (1983). The mushroom cultivator: a practical guide to growing mushroom at home. Washington: First Washington
Thomas, G. W. (1996). Soil pH and soil acidity. In Sparks, D. L.Page, A. L.Helmke, P. A.Loeppert, R. H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner, M. E. (Eds.). Methods of Soil Analysis. Part 3. 3rd ed. (pp. 475- 490). Madison: American Society Agronomy.  https://doi.org/10.2136/sssabookser5.3.c16.
Toker, H., Baysal, E., Yigitbasi, O. N., Colak, M., Peker, H., Simsek, H., & Yilmaz, F. (2007). Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts using poplar leaves as activator material. African Journal of Biotechnology, 6(3), 204–212.
Vahid Afagh, H. (1997). Recycling of spent mushroom compost (SMC) and reusing it as a casing soil, MSc Thesis, Tehran: Shahid Beheshti University, Faculty of Science, 142 P. (In Persian).
Varavipour, M. (2010). General Soil Science.Tehran: Payame Noor University Press. (In Persian).
Visscher, H. R. (1975). Structure of mushroom casing soil and its influence on yield and microflora. Netherlands Journal of Agricultural Science, 23, 36-47. https://doi.org/10.18174/njas.v23i1.17199.