Effect of Salinity Stress on Some Biochemical Characteristics of Three Quinoa Varieties

Document Type : Full Paper

Authors

1 Department of Horticultural Sciences, Faculty of Agronomy, Azad University Shirvan, Shirvan, Iran

2 Department of Horticultural Sciences, Faculty of Agronomy, Islamic Azad University Shirvan, Shirvan, Iran

3 Department of Chemical Engineering, Faculty of Chemistry, Islamic Azad University Quchan, Quchan branch, Iran

4 Department of Medical Sciences, Faculty of Medical, Sabzevar University, Sabzevar, Iran

5 National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

Abstract

Salinity stress is one of the most important factors that affects the quality of crops. In order to investigate the influence of salinity stress on physiological and biochemical characteristics of different quinoa varieties, an experiment was conducted as split plots based on a randomized complete block design with three replications, in Yazd city in the agricultural year 2017-2018, under field conditions. Irrigation with saline water (0, 10 and 17 dS/m) was considered as the main plot and varieties (Nsrcqe, Nsrcqb and Titcaca) as the sub-plot. The results showed that salinity and varieties significantly affected DPPH radical scavenging activity, phenol, flavonoid, anti-inflammatory and Na+/K+ ratio, as well as seed protein and saponin contents. Irrigation with saline water at 17 dS/m level increased the antioxidant activity of DPPH (19%), the antioxidant activity of grain measured using the copper ion reduction method (25%), the antioxidant activity measured by the iron reducing power method (50 %), grain protein (30.5 %), and the anti-inflammatory activity (30.5 %), whereas it reduced the grain saponin content (15%), and the sodium to potassium ratio (73.6 %) compared to the control. Results indicated that the salinity also elevated the content of collagenic acid, paracoumaric acid, quercetin acid and camphor acid in quinoa grains. Among the studies varieties Nsrcqb showed the highest amount of antioxidant and anti-inflammatory activity but had no significant difference with the Titcaca in most examined traits. The results of this experiment showed that cultivation of Nsrcqb variety and irrigation with saline water at 17 dS/m can increase the antioxidant and anti-inflammatory properties of quinoa.

Keywords

Main Subjects


Extended Abstract

Introduction

    Salinity is one of the major threats to crop production, especially in arid and semi- arid regions of the world. Quinoa (Chenopodium quinoa Willd.) is a seed-producing crop, native to the Andes mountains, and its popularity increasing globally-both due to its seeds respectable nutritional values and resistance to drought. The aim of this study was to investigate the physiological and biochemical responses of quinoa to salinity stress.

 

 Material and Methods

    In order to investigate the influence of salinity stress on physiological and biochemical characteristics of different quinoa varieties, an experiment was conducted as split plots based on a randomized complete block design with three replications, in Yazd city in the agricultural year 2017-2018, under field conditions. Irrigation with saline water (0, 10 and 17 dS/m) was considered as the main plot and varieties (Nsrcqe, Nsrcqb and Titcaca) as the sub-plot. Antioxidant activity, saponin, N+/K+ ratio, seed protien, anti-inflammatory activity, phenol content and flavonoid content were estimated.

 

Result and Discussion

    The results showed that salinity and varieties significantly affected DPPH radical scavenging activity, phenol, flavonoid, anti-inflammatory and Na+/K+ ratio, as well as seed protein and saponin contents. Irrigation with saline water at 17 dS/m level increased the antioxidant activity of DPPH (19 %), the antioxidant activity of grain measured using the copper ion reduction method (25 %), the antioxidant activity measured by the iron reducing power method (50 %), grain protein (30.5 %), and the anti-inflammatory activity (30.5 %), whereas it reduced the grain saponin content (15 %), and the sodium to potassium ratio (73.6 %) compared to the control. Results indicated that the salinity also elevated the content of collagenic acid, paracoumaric acid, quercetin acid and camphor acid in quinoa grains. The results of this experiment showed that cultivation of Nsrcqb variety and irrigation with saline water at 17 dS/m can increase the antioxidant and anti-inflammatory properties of quinoa. Although salinity stress lead to oxidative damage, antioxidant have an important protective role in scavenging and protecting plant tissues. 

 

Conclusion

    Generally, salinity levels and types of varieties significantly affected physiological and biochemical parameters in quinoa and led to an increase in DPPH radical scavenging activity, phenol and flavonoid content, and a reduction in Na+/K+ ratio. Also, our results showed that among the studied varieties, Nsrcqb had the highest tolerance to salinity stress.

استکی، معصومه؛ دانشمند وزیری، محسن؛ باقری تودشکی، حمید و منوچهری، هما (1393). گیاه کینوا. ماهنامه برزگر، 34 (1099) 41- 43.
امیدی، حشمت؛ شمس، هدی؛ سهندی، مهدی و رجبیان، طیبه (1398). رشد و فیزیولوژی بالنگ (Lallemantia sp.) تحت تنش خشکی و اثر آن روی محتوای دارویی گیاه. مجله بیوشیمی و فیزیولوژی گیاهی، 130، 641-652.
امینی، علیرضا (1391). اثر کمبود آب روی محتوای پرولین و فعالیت آنتی اکسیدان روی سه کولتیوار زیتون. مجله بیولوژی و علوم گیاهی، 27، 156-167.
جعفری، طاهره؛ ایرانبخش، علی، کمالی، کاظم و دانشمند، فاطمه (1400). اثر استرس شوری روی برخی از پارامترهای برگ، غلظت یون­های معدنی، اسمولیتیز، آنزیم آنتی اکسیدان و فعالیت فنیل آلانین در سه ژنوتیپ کینوا (Chenopodium quinoa Willd).. مجله سلول و مولکول بیوتکنولوژی، 12 (45) ،110-117.
جمالی، صابر؛ شریفانی، حسین؛ هزارجریب، ابوطالب و سپهوند، نیاز علی (1395). اثر سطوح مختلف شوری روی جوانه زنی و رشد دو کولتیوار کینوا. مجله تولیدات آب و خاک، 6 (1)، 86-97.
خسرویار، سوسن و آراسته، علی (1397). مقایسه اثر ضد التهابی و ظرفیت آنتی اکسیدانی عصاره گیاه Melilotus officinalis و Fraxinus excelsior . مجله آرشیو گیاهی، 18(1)، 443-448.
رجایی، مجید. (1401). بر هم کنش شوری و سولفات آمونیوم بر رشد و غلظت عناصر غذایی در پرتقال والنسیا پیوند شده روی لیمو. مجله علوم باغبانی ایران، 53 (2)، 321-331.
سپهبد، ناصر؛ تواضع، مریم و کهبازی، مهدی (1393). کینوا، گیاه مهم برای امنیت و پایداری کشاورزی در ایران. یازدهمین کنفرانس علوم کشاورزی و اصلاح گیاهی، همدان. 22-29.
شریفانی، حسین؛ جمالی، صابر و سجادی، فراست (1398). بررسی اثرسطوح مختلف شوری روی پارامترهای مورفولوژی کینوا (Chenopodium quinoa Willd.) تحت آبیاری مختلف. مجله علوم کشاورزی و منابع طبیعی گرگان، 22 (2)، 15-27.
طاوسی، مهرزاد و لطفعلی آدینه، غلام عباس (1396). کشت کینوا و نتایج تحقیقات آن. مرکز تحقیقات و آموزش کشاورزی، نشر آموزش کشاورزی. 15-17.
عقیقی شاهوردی، مهدی؛ امیدی، حمید و طالب زاده، سعید (1398). واکنش استویا به استرس NaCl: رشد، پیگمان­های فتوسنتزی و محتوای گلیکوزید در ریشه و ساقه. مجله علوم کشاورزی ایران، 18(4)، 355-360.
نائمی، طاهره؛ فهمیده، لیلا و فاخری، برات علی (1397). اثر استرس خشکی روی آنزیم آنتی اکسیدان، محتوای پرولین و کربوهیدرات در برخی ژنوتیپ­های گندم دروم در مرحله دانهالی. مجله اصلاح گیاهان زراعی، 10 (26) ،22-31.
نصرالله زاده اصل، وحید؛ محرم نژاد، سجاد و یوسفی، مهری (1396). عملکرد دانه، محتوای کلروفیل، تجمع اسمولیت، فنل کل و فعالیت کاتالیز در ذرت تحت تنش خشکی. مجله اکوفیزیولوژی گیاهی، 12(46) ،1-14.
 
REFERENCES
Abbas, G., Amjad, M., Saqib, M., Murtaza, B., Asif Naeem, M., Shabbir, A. & Murtaza, G. (2021). Soil sodicity is more detrimental than salinity for quinoa (Chenopodium quinoa Willd.) A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 207(1), 59-73.
Aghighi Shahverdi, M., Omidi, H. & Tabatabaei, S. (2019). Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. Journal of the Saudi Society of Agricultural Science, 18(4), 355-360. )In Persian).
Amini, A. Z. (2014). Effects of water deficit on proline content and activity of antioxidant enzymes among three olive (Olea europaea L.) cultivars. Journal of Plant Research Iranian Journal of Biology, 27,156-167 (In Persian).
Apak, R., Guklu, K., Ozurk, M. & Chelik, S. (2008). Mechanism of antioxidant capacity assays and the cuprac cupric ion reducing antioxidant capacity. Microchimica Acta Horticultural, 160, 413-419
Bettaieb, I., Knioua, S., Hamrouni, I., Limam, F. & Marzouk, B. (2011). Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts. Journal of Agricultural and Food Chemistry, 59, 328-34.
Bondel, K. B. & Schmid, K. J. (2021). Quinoa diversity and its implications for breeding. In Sandra M. Schmockel (Ed.) The quinoa genome. (pp 107-118.) Springer.
Bradfored, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-54.
Derbali, W., Mana, A., Spengler, B., Goussi, R., Abideen, Z., Ghezellou, P., Abdelly, C., Forreiter, C. & Koyro, H.W. (2021). Comparative proteomic approach to study the salinity effect on the growth of two contrasting quinoa genotypes. Plant Physiology and Biochemistry, 163, 215-229.
Esteki, M., Daneshmand Vaziri, M., BagheriTodeshki, H., & Manouchehri, H. (2014).Quinoa. Barzegar Monthly, 34 (1099), 41-43. (In Persian).
Hamada, A. & El-Enany, A. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Journal of Biologia Plantarum, 36(1), 75-81
Hatano, T., Kagawa, H., Yasuhara, T. & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and pharmaceutical bulletin, 36, 20-27.
Hinojosa, L., Gonzalez, J.A., Barrios-Masias, F.H., Fuentes, F. & Murphy, K.M. (2018). Quinoa abiotic stress responses. Journal of Plants, 7(4), 106-111.
Jafari, T., Iranbakhsh, A., kamali, K., Daneshmand, F. & seifati. (2021). Effect of salinity stress levels on some growth parameters, mineral ion concentration, osmolytes, non-enzymatic antioxidants and phenylalanine ammonialyase activity in three genotypes of (Chenopodium quinoa Willd.). New Cellularand Molecular Biotechnology Journal, 12(45), 110-117 (In Persian).
Jamali, s., Sharifian, H., Hezarjarib, A. & Sepahvand, N. (2016). The effect of different levels of salinity on germination and growth indices of two cultivars of Quinoa. Journal of Water and Soil Protection. 6(1), 86-97 (In Persian).
Khosroyar, S. & Arastehnodeh, A. (2018). Comparison of anti-inflammatory and antioxidant capacity of alcholic extraction of fraxinus excelsior and melilotus officinalis plant. Plant Archives, 18(1) 1, 443-448 (In Persian).
Koyro, H. and Eisa, S. (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Journal of Plant Soil. 302: 79–90.
Li, G., Tang, C., Wang, Y., Yang, J., Wu, H. & Chen, G. (2015). A rapid and sensitive method for semicarbazide screening in foodstuffs by HPLC with fluorescence detection. Food Analytical Methods, 8, 1804-1811.
Naeemi, T., Fahmideh, L. & Fakheri, A. (2018). The impact of drought stress on antioxidant enzymes activities, containing of proline and carbohydrate in some genotypes of durum wheat (Triticum turgidu L.) at seedling stage. Journal of Crop Breeding. 10 (26), 22-31(In Persian).          
Nasrollahzade Asl, V., Moharramnejad, S. & Yusefi, M. (2017). Grain yield, chlorophyll content, osmolyte accumulation, total phenolics and catalase activity in maize (Zea mays L.) under drought stress, Journal of Iranian Plant Ecophysiological Research. 12 (46), 1-14 (In Persian).
Navruz-Varli, S. & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376.
Omidi, H., Shams, H., Sahandi, M. S. & Rajabian, T. (2018). Balangu (Lallemantia sp.) growth and physiology under field drought conditions affecting plant medicinal content. Plant Physiology and Biochemistry, 130, 641- 652 (In Persian).
Pulvento, C., Riccardi, M., Lavini, A., Iafelice, G., Marconi, E. & d’Andria, R. (2012). Yield and quality characteristics of quinoa grown in open field under different saline and non‐saline irrigation regimes. Journal of Agronomy and Crop Science, 198, 254-263.
Rajaie, M. (2022). The interaction of salinity stress and ammonium sulfate on growth and nutrients concentration in Valencia orang plant grafted on Lemon, Iranian Journal of Horticulture Science. 53(2), 321-331 (In Persian).
Ranjan, A., Archana, K. & Ranjan, S. (2017). Gossypium herbaceum GhCYP1 regulates water-use efficiency and drought tolerance by modulating stomatal activity aphotosynthesis in transgenic tobacco. Biosciences, Biotechnology Research Asia. 14(3), 869-880.
Ridout, C.L., Price, K.R, Dupont, M.S, Parker, M. L. & Fenwick, G. R. (1991). Quinoa saponins analysis and preliminary investigations into the effects of reduction by processing. Journal of the Science of Food and Agriculture, 54,165-176.
Sakamoto, M. & Suzuki, T. (2017). Synergistic effects of a night temperature shift and methyl Jasmonate on the production of anthocyanin in red leaf lettuce. American Journal of Plant Sciences, 8(7), 34–49.
Sakat, S., Juvekar, A.R. & Gambhire, M. N. (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. International Journal of Pharm Sciences, 2, 146-155.
Sepahbod, N. A., Tavazo, M. & Kahbazi, M. (2014).Quinoa is an importance plant for food security and sustainable agriculture in Iran. 11th Iranian Agricultural Sciences and Plant Breeding Congress, Oct. Hamedan, pp.22-29. (In Persian).
Sharifani, H., Jamali, S. & Sajadi, F. (2018). Investigation the effect of different salinity levels on the morphological parameters of quinoa (Chenopodium quinoa Willd.) under different irrigation regimes. Journal of Science and Technology of Agriculture and Natural Resource, 22 (2), 15-27 (In Persian).
Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D. & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. Journal of New Physiologist, 163, 547-561.
Tavosi, M. & Lotfali Adine, G, A. (2018). Quinoa cultivation and researches results. Agricultural Research and Education center, Agricultural Education Publication, pp.15-19. (In Persian)
Zhi-Quan, C. & Qi, S. (2015). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. American Journal of Plant Sciences, 4(1), 20-28.