Evaluation the efficiency of Citrullus colocynthis and Cucumis metuliferus as ‎rootstocks for cucumber to increase the salinity resistance compared to the ‎commercial rootstock of Cobalt

Document Type : Full Paper


1 Assistant Professor, Faculty of Agriculture and Environment, Arak University, Arak, Iran‎

2 Associate Professor, Faculty of Agriculture and Environment, Arak University, Arak, Iran‎

3 Professor, Faculty of Agriculture and Environment, Arak University, Arak, Iran‎


Water and soil salinity is one of the reasons for the reduction of cucumber yield. In order to verify the feasibility of using two non-commercial rootstocks to increase salinity resistance in cucumber and compare it with the commercial rootstock of Cobalt RZ F1, an experiment was conducted in the research farm of agricultural faculty of Arak University in a factorial experiment based on randomized complete block design. The first factor was salinity stress at three levels (no stress, 30 mM and 60 mM NaCl) and the second factor was rootstocks at four levels included non-grafted cucumber, colocynth (Citrullus colocynthis), kiwano (Cucumis metuliferus) and Cobalt (C. maxima×C. moschata). The results showed that increasing the amount of salinity led to a significant decrease in the stem length, stem, leaf and fruit dry weight percentage. The Cobalt rootstock had the highest stem length, the highest length to fruit width ratio and the lowest increase in malondialdehyde content under salinity stress. The colocynth rootstock had better performance in terms of dry weight percentage of stem, total leaf chlorophyll, leaf carotenoid, relative leaf water content and reduction of leaf sodium content in saline conditions compared to other rootstocks and non-grafted cucumber. The highest amounts of total phenol content, leaf potassium content and percentage of leaf and fruit dry weight were observed in grafted cucumber on kiwano rootstock. The results showed that colocynth and kiwano rootstocks can be introduced as suitable and compatible rootstocks to increase salinity tolerance in grafted cucumbers.


  1. Adarsh, A., Kumar, A., Pratap, T., Solankey, S. S. & Singh, H. K. (2020). Grafting in vegetable crops towards stress tolerance. Edited by: Hemant Kumar Singh, Shashank Shekhar Solankey and Manoj Kumar Roy, Prosperity through Improved Agricultural Technologies, (pp. 167-184). Delhi, India:  Jaya Publishing House.
  2. Agamy, R.A., Hafez, E.E. & Taha, T.H. (2013). Acquired resistant motivated by salicylic acid applications on salt stressed tomato (Lycopersicon esculentum). American-Eurasian Journal of Agricultural & Environmental Sciences, 13(1), 50-57.
  3. Ahmadi, K., Ebadzadeh, H.R., Hatami, F., Mohammadnia Afroozi, SH., Abbas Taghani, R., Yari, SH. & Kalantari, M. (2021). Agricultural statistics volume 3: Horticultural products. Ministry of Agricultural Jihad, Deputy of Planning and Economic, Iran ICT Center. Tehran. 157p. (In Farsi).
  4. Akbari Cheshmehmanesh, A., Kashi, A., Meamar Moshrefi, M. & Khososi, M. (2003). Effect of grafting on growth and yield of two greenhouse cucumber cultivars, Vilmorin and Royal 24189, onto figleaf squash (Cucurbita ficifolia) rootstock. Seed & Plant Improvement Journal, 19(4), 447-456. (In Farsi).
  5. Alizadeh, A. (2007). Relation between water, soil and plant. Astan Ghods Razavi Publications, Mashhad. 472p. (In Farsi).
  6. Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C. & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168, 889-899.
  7. Bikdeloo, M., Colla, G., Rouphael, Y., Hassandokht, M. R., Soltani, F., Salehi, R., Kumar, P. & Cardarelli, M. (2021). Morphological and physio-biochemical responses of watermelon grafted onto rootstocks of wild watermelon [Citrullus colocynthis (L.) Schrad] and commercial interspecific cucurbita hybrid to drought stress. Horticulturae, 7(359), 1-12.
  8. Colla G, Rouphael Y, Rea E & Cardarelli M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulture, 135, 177-185.
  9. Colla, G., Raupahel, Y., Gardarelli, M. & Rea, E. (2006a). Effect of salinity on yield fruit quality, leaf gas exchange and mineral composition of grafted watermelon plants. HortScience, 41, 622-627.
  10. Colla, G., Rouphael, Y., Leonardi, C. & Bie, Z. (2010a). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127, 147-155.
  11. Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A. & Rea, E. (2010b). The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environmental & Experimental Botany, 68 (3), 283-91.
  12. Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A. & Rea, E. (2006b). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. The Journal of Horticultural Science & Biotechnology, 81 (1), 146-52.
  13. Dane, F., Liu, J. & Zhang, C. (2006). Phylogeograghy of the bitter apple, Citrullus colocynthis. Genetic Resources & Crop Evolution, 54, 327-336.
  14. Davis, A.R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J.V., Lee,G., Huh, Y.C., Sun, Z., Miguel, A., King, S.R., Cohen, R. & Lee, J.M. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27, 50-74.
  15. Ding, M., Bie, B., Jiang, W., Duan, Q., Du, H. & Huang, D. (2011). Physiological advantages of grafted watermelon (Citrullus lanatus) seedlings under low-temperature storage in darkness. HortScience. 46(7), 993-996.
  16. Farajimanesh, A. (2015). Effects of salinity on cucumber plants grafted on different rootstocks. M.Sc. Thesis, Faculty of Agriculture, Isfahan University of Technology, Iran. (In Farsi).
  17. Farajimanesh, A., Haghighi, M. & Mobli, M. (2016). The effect of different endemic cucurbita rootstocks on water relation and physiological changes of grafted cucumber under salinity stress. Iranian Journal of Horticultural Science & Technology, 17 (3), 351-368. (In Farsi).
  18. Farhadi, A., Aroiee, H., Nemati, H. Salehi, R. & Giuffrida, F. (2017). The effects of grafting to improve salinity tolerance in greenhouse cucumber cv. Spadana. Journal of Soil & Plant Interactions, 8(3), 121-138. (In Farsi).
  19. Farhadi, A. (2016). Study of growth and yield response of grafted and non-grafted greenhouse cucumber plants to salinity stress. Ph.D. Thesis. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Farsi).
  20. Gisbert, C., Gammoudi, N., Munera, M., Giné, A., Pocurull, M., Sorribas, F. J. & Picó, M. B. (2015). Evaluation of two potential Cucumis spp. resources for grafting melons. Acta Horticulturae, 1151, 157-162.
  21. Guan, W., Zhao, X., Dickson, D. W., Mendes, M. L. & Thies, J. (2014). Root-knot nematode resistance, yield, and fruit quality of specialty melons grafted onto Cucumis metulifer. HortScience, 49(8), 1046-1051.
  22. He, Y., Zhu, Z.J., Yang, J., Ni, X.L. & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental & Experimental Botany, 66, 270-278.
  23. Huang, Y., Bie, Z.L., Liu, P., Niu, M., Zhen, A., Liu, Z.X., & Wang, B. (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae, 149, 47-54.
  24. Huang, Y., Tang, R., Cao, Q., & Bie, Z. (2009). Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae, 122(1), 26-31.
  25. Jones, M.M. & Turner, T.C. (1978). Osmotic adjustment in leaves of sorghum on response to water deficits. Plant Physiology, 25, 591-597.
  26. Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A. & Nabati, J. (2009). Physiology of environmental stresses in plants. Publication of Ferdowsi University. 502 pp. (In Farsi).
  27. Kalra, Y. (Ed.). (1997). Handbook of reference methods for plant analysis. CRC press.
  28. Kamali, K., Zamani, E. & Ramin, A. (2020). An investigation of salinity stress effects on vegetative and physiological characteristics of cucumber (Cucumis sativus). Journal of Crop Breeding, 12(33), 110-118. (In Farsi).
  29. Korkmaz, A., Uzunlu, M. & Demirkiran, A. R. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29(6), 503-508.
  30. Kumar, P., Rouphael, Y., Cardarelli, M. & Colla, G. (2015). Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. Journal of Plant Nutrition & Soil Science, 178, 848-860.
  31. Lei, B., Huang, Y., Sun, J.Y., Xie, J.J., Niu, M.L., Liu, Z.X., Fan, M.L. & Bie, Z.L. (2014). Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress. Physiologia Plantarum, 152, 738-748.
  32. Lichtenthder, H.K. (1987). Cholorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymeology, 148, 350-382.
  33. Maathuis, F.J.M. & Sanders, D. (1996). Mechanisms of potassium absorption by higher plant roots. Plant Physiology, 96, 158-168.
  34. Madadkhah, E., Bolandnazar, S. & Oustan, S. (2017). Improving cucumber salt tolerance by grafting on cucurbit rootstock. Journal of Agricultural Science & Sustainable Production, 27(3), 153-170. (In Farsi).
  35. Madadkhah, E., Bolandnazar, S. & Oustan, S. (2018). Effect of salt stress on growth, antioxidant enzymes activity, lipid peroxidation and photosystem ΙΙ efficiency in cucumber grafted on cucurbit rootstock. Iranian Journal of Horticultural Science, 49(2), 465-475. (In Farsi).
  36. Madadkhah, E. (2018). Physiological, biochemical and yield traits evaluation of greenhouse cucumber grafted on some cucurbit rootstock under NaCl salinity stress in hydroponic condition. Ph.D. Thesis. Faculty of Agriculture, Tabriz University, Iran. (In Farsi).
  37. Martin-Tanguy, J. (2001). Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regulation, 34(1), 135-148.
  38. Moameni, A. (2010). Geographical distribution and salinity levels of soil resources of Iran. Iranian Journal of Soil Research, 24, 203-215. (In Farsi).
  39. Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  40. Niu, M., Huang, Y., Sun, S., Sun, J., Cao, H., Shabala, S. & Bie, Z. (2018). Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Journal of Experimental Botany, 69(14), 3465-3476.
  41. Niu, M., Sun, S., Nawaz, M. A., Sun, J., Cao, H., Lu, J. & Bie, Z. (2019). Grafting cucumber onto pumpkin induced early stomatal closure by increasing ABA sensitivity under salinity conditions. Frontiers in Plant Science, 10, 1290.
  42. Oda, M. (2002). Grafting of vegetable crops. Scientific report of the graduate school of agriculture & biological sciences. Osaka Prefecture University, 54, 49-72.
  43. Papadopoulos, V., Rendig, V. & Broadbent, F.E. (1995). Growth nutrition and water uptake of tomato plants with divided roots in differentially salinized soil. Agronomy Journal, 77, 21-26.
  44. Petropoulos, S.A., Khah, E.M. & Passam, H.C. (2012). Evaluation of rootstocks for watermelon grafting with reference to plant development, yield and fruit quality. International Journal of Plant Production, 6 (4), 481-491.
  45. Rajabipour, E., Raghami, M., Karimi, H. R. & Salehi, R. (2019). Investigation on eco-physiological responses of grafted and non-grafted plants in two Iranian melon accessions under salinity stress. Journal of Horticultural Science, 33(1), 89-100. (In Farsi).
  46. Ranjbar, G. & Pirasteh-Anosheh, H. (2015). A glance to the salinity research in Iran with emphasis on improvement of field crops production. Iranian Journal of Crop Sciences, 17(2). (In Farsi).
  47. Roosta, H.R., Akbari, A., Raghami, M. & Bikdeloo, M. (2022). Response of growth physiological characteristics and concentration of some mineral nutrents of local grafted watermelon to oxygen deficiency stress in hydroponic system. Iranian Journal of Horticultural Science, 53(3),647-665.(In Farsi).
  48. Roosta, H.R. & Bikdeloo, M. (2021). Nutritional responses of grafted cucumber on two types of Iranian local squash to alkalinity and salinity stresses. Journal of Plant Nutrition, 45(4): 1-8.
  49. Rouphael, Y., Cardarelli, M., Colla, G. & Rea, E. (2008). Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43, 730-736.
  50. Rus, A., Lee, B., Mun˜oz-Mayer, A., Sharkhuu, A., Miura, K., Zhu, J.K., Bressan, R.A. & Masegawa, P.M. (2004). AtHKT1 facilitates Na+ homeostasis and K+ nutrition in plants. Plant Physiology, 136, 2500-2511.
  51. Schwarz, D., Rouphael, Y., Colla, G. & Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127, 162-171.
  52. Shabala, S., Babourina, O. & Newman, I. (2000). Ion‐specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51(348), 1243-1253.
  53. Shakarami, B., Dianati, T.G., Tabari, M. & Behtari, B. (2011). The effect of priming treatments on salinity tolerance of Festuca arundinacea Schreb and Festuca ovina seeds during germination and early growth. Iranian Journal of Rangelands Forests Plant Breeding & Genetic Research, 18(2), 318-328. (In Farsi).
  54. Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology & Viticulture, 16(3), 144-158.
  55. Soori, N., Bakhshi, D., Rezaei, N. A. & Faizian, M. (2019). Effect of salinity stress on some physiological characteristics and photosynthetic parameters of several Iranian commercial pomegranate genotypes. Journal of Plant Process & Function, 8(30), 155-170. (In Farsi).
  56. Stepien, P. & Klobus, G. (2006). Water relations and photosynthesis in Cucumis sativus leaves under salt stress. Biologia Plant, 50, 610-616.
  57. Taiz, L. & Zeiger, E. (2010). Plant physiology, 5th ed. Sinauer Associates Inc. Publishers, Massachusetts. 690 pp.
  58. Usanmaz, S. & Abak, K. (2019). Plant growth and yield of cucumber plants grafted on different commercial and local rootstocks grown under salinity stress. Saudi Journal of Biological Sciences, 26(6), 1134-1139.
  59. Usman, J. G., Sodipo, O. A., Kwaghe, A. & Sandabe, U. K. (2015). Uses of Cucumis metuliferus: a review. Cancer Biology, 5, 24-34.
  60. Yang, L. F., Zhu, Y. L., Hu, C. M., Liu, Z. L. & Zhang, G. W. (2006). Effects of NaCl stress on the contents of the substances regulating membrane lipid oxidation and osmosis and photosynthetic characteristics of grafted cucumber. Acta Botanica Boreali-occidentalia Sinica, 26, 1195-1200.
  61. Yildirim, E., Turan, M. & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593-612.
  62. Zafreh, A. A. H., Kashi, A., Safari, Z., Kalatejari, S. & Farhadi, A. (2013). Effect of different rootstocks and grafting methods on survival rate, vegetative growth, yield, and some qualitative traits in greenhouse grown cucumber, cv." Khassib". Iranian Journal of Horticultural Science, 44(2), 137-147. (In Farsi).