Effect of explants and some plant growth regulators on regeneration and amount of ‎periwinkle’s vincristine (Catharanthus roseus L.)‎

Document Type : Full Paper


1 Ph. D. Candidate, Faculty of Agriculture, Bu‏ ‏Ali Sina University, Hamedan, Iran

2 Associate Professor, Faculty of Agriculture, Bu‏ ‏Ali Sina University, Hamedan, Iran


The aim of this study was to optimize different concentrations of some growth regulators and introduce the effective explants which lead to increase callus induction and regeneration efficiency in Catharanthus roseus L. and recognize growth stage which produce the highest amount of vincristine. The experiment was conducted as a factorial with a completely randomized design. The first factor was explant type at eight levels and the second factor was different concentrations of growth regulators at nine levels. The results showed that the highest percentage of callus induction was observed the medium containing 8 μM 2,4-D with 2 μM BAP in single node (100 percent), hypocotyl (100 percent), leaf (100 percent), root (99.16 percent), ovary (98.33 percent), petiole (95.83 percent), anther (94.16 percent) and cotyledon (93.33 percent) explants, respectively. Calluses derived from hypocotyl, anther and ovary explants were able to produce highly efficient somatic embryos. 0.8 g L-1 casein hydrolyzate cause the highest percentage of embryogenesis. The maximum germination percentage was obtained from explants drived from hypocotyl (53.66 %), anther (51.00 %) and ovary (46.00 %). Also, the regeneration percentage of hypocotyl, anther and ovary explants was 78, 73 and 68 percent, respectively. The topmost amount of vincristine in comparison with different types of calluses and different stages of growth was obtained from plants regenerated from callus which derived from anther, ovary and hypocotyl explants and the amount was 1.4 μg g-1 dry weight more than non-embryonic callus of the mentioned explants.


  1. Afreen, F., Zobayed, S. M. A. & Kozai, T. (2002). Photoautotrophic culture of Coffea arabusta somatic embryos: development of a bioreactor for large‐scale plantlet conversion from cotyledonary embryos. Annals of Botany, 90(1), 21-29.
  2. Aslam, J., Khan, S. H., Siddiqui, Z. H., Fatima, Z., Maqsood, M., Bhat, M. A., & Sharma, M. P. (2010 a). Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Pharmacie Globale (IJCP), 4(12), 1-16.
  3. Aslam, J., Mujib, A., Fatima, Z. & Sharma, M. P. (2010 b). Variations in vinblastine production at different stages of somatic embryogenesis, embryo, and field-grown plantlets of Catharanthus roseus(G) Don, as revealed by HPLC. In Vitro Cellular & Developmental Biology-Plant, 46(4), 348-353.
  4. Aslam, J., Mujib, A., Nasim, S. A. & Sharma, M. P. (2009). Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus (G) Don. Scientia Horticulturae, 119(3), 325-329.
  5. Ataei-Azimi, A., Hashemloian, B. D., Ebrahimzadeh, H. & Majd, A. (2008). High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture. African Journal of Biotechnology, 7(16), 2834-2839.
  6. Chandran, H., Meena, M., Barupal, T. & Sharma, K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, 26, e00450.
  7. Choi, P. S., Lee, S. Y., Chung, H. J., In, D. S., Choi, D. W. & Liu, J. R. (2003). Assessing competence for adventitious shoot formation in hypocotyl explant cultures from Catharanthus roseus Journal of Plant Biology, 46(2), 90-94.
  8. Das, A., Sarkar, S., Bhattacharyya, S. & Gantait, S. (2020). Biotechnological advancements in Catharanthus roseus (L.) G. Don. Applied Microbiology and Biotechnology, 104(11), 4811-4835.
  9. Farhadi, H., Hassanpouraghdam, M. B. & Aazami, M. A. (2021). The induction and development of somatic embryos from the in vitro cultures of Catharanthus roseus (L.) G. Don. Advances in Horticultural Science, 35(1), 232-246.
  10. Hirata, K., Miyamoto, K. & Miura, Y. (1994). Catharanthus roseus (Periwinkle): production of vindoline and catharanthine in multiple shoot cultures. In Medicinal and Aromatic Plants VI (pp. 46-55). Springer, Berlin, Heidelberg.
  11. Hisiger, S. & Jolicoeur, M. (2007). Analysis of Catharanthus roseus alkaloids by HPLC. Phytochemistry Reviews, 6(2-3), 207-234.
  12. Ilah, A., Mujib, A., Junaid, A., Samar, F. & Abdin, M. Z. (2009). Somatic embryogenesis and two embryo specific proteins (38 and 33 kD) in Catharanthus roseus. Biologia, 64(2), 299-304.
  13. Jeyapackiaseeli, R. & Kumar, T. D. (2021). Research works in alkaloid enhancement in plants-A Brief Review. Soft Computing for Intelligent Systems, 451-465.
  14. Junaid, A., Mujib, A., Bhat, M. A. & Sharma, M. P. (2006). Somatic embryo proliferation, maturation and germination in Catharanthus roseus. Plant Cell, Tissue and Organ Culture, 84(3), 325-332.
  15. Junaid, A., Mujib, A., Bhat, M. A., Sharma, M. P. & Šamaj, J. (2007). Somatic embryogenesis and plant regeneration in Catharanthus roseus. Biologia Plantarum, 51(4), 641-646.
  16. Kalidass, C., Mohan, V. R. & Daniel, A. (2009). Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus (apocynaceae). Tropical and Subtropical Agroecosystems, 12(2), 283-288.
  17. Kim, S. W., In, D. S., Choi, P. S. & Liu, J. R. (2004). Plant regeneration from immature zygotic embryo-derived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell, Tissue and Organ Culture, 76(2), 131-135.
  18. Kim, S. W., Song, N. H., Jung, K. H., Kwak, S. S. & Liu, J. R. (1994). High frequency plant regeneration from anther-derived cell suspension cultures via somatic embryogenesis in Catharanthus roseus. Plant Cell Reports, 13(6), 319-322.
  19. Ma, R., Ritala, A., Oksman-Caldentey, K. M. & Rischer, H. (2006). Development of in vitro techniques for the important medicinal plant Veratrum californicum. Planta Medica, 72(12), 1142-1148.
  20. Mohammed, F., Satyapal, S., Tanwer, B. S., Moinuddin, K. & Anwar, S. (2011). In vitro regeneration of multiplication shoots in Catharanthus roseus-an important medicinal plant. Advances in Applied Science Research, 2(1), 208-313.
  21. Mujib, A., Ilah, A., Aslam, J., Fatima, S., Siddiqui, Z. H. & Maqsood, M. (2012). Catharanthus roseus alkaloids: application of biotechnology for improving yield. Plant Growth Regulation, 68(2), 111-127.
  22. Pan, Q., Chen, Y. U., Wang, Q., Yuan, F., Xing, S., Tian, Y., & Tang, K. (2010). Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regulation, 60(2), 133-141.
  23. Ramezani, A., Haddad, R., Sedaghati, B. & Jafari, D. J. S. A. (2018). Effects of fungal extracts on vinblastine and vincristine production and their biosynthesis pathway genes in Catharanthus roseus. South African Journal of Botany, 119, 163-171.
  24. Tonk, D., Mujib, A., Maqsood, M., Ali, M. & Zafar, N. (2016). Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell, Tissue and Organ Culture, 126(2), 291-303.
  25. Whitmer, S., van der Heijden, R. & Verpoorte, R. (2002). Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. Journal of Biotechnology, 96(2), 193-203.
  26. Yuan, F., Wang, Q., Pan, Q., Wang, G., Zhao, J., Tian, Y. & Tang, K. (2011). An efficient somatic embryogenesis based plant regeneration from the hypocotyl of Catharanthus roseus. African Journal of Biotechnology, 10(66), 14786-14795.
  27. Zhang, J. F., Gong, S. & Guo, Z. G. (2011). Effects of different elicitors on 10‐deacetylbaccatin III‐10‐O‐acetyltransferase activity and cytochrome P450 monooxygenase content in suspension cultures of Taxus cuspidata cells. Cell Biology International Reports, 18(1), 7-13.