Study the effect of plant growth biostimulants on total tuber yield, marketable tuber ‎yield and qualitative characteristics of potato‏ ‏‎(Sante cultivar)‎

Document Type : Full Paper

Authors

1 Assistant Professor, Soil and Water Research Department, Khouzestan Agricultural and Natural Resources ‎Research and Education Center, AREEO, Ahwaz, Iran

2 Associate Professor, Seed and Plant Improvement Department, Khuzestan Agricultural and Natural Resources Research and ‎Education Center, AREEO, Ahwaz, Iran

3 Researcher, Soil and Water Research Department, Khouzestan Agricultural and Natural Resources ‎Research and Education Center, AREEO, Ahwaz, Iran

Abstract

This research was conducted to investigate the influence of plant growth biostimulants on quantitative and qualitative characteristics of potato (Solanum tubersom cv. Sante) in randomized complete blocks design with eight treatments and three replications at Behbahan Agricultural Research Station in one year (2019-2020). Treatments included: control (no application of plant growth biostimulants), humic acid, free amino acid (L), amino acid-Zn, amino acid-K, amino acid-Ca, amino acid-K-Ca and combine application of humic acid, amino acid-Zn and amino acid-K-Ca. The results showed plant growth biostimulants (except free amino acid) significantly increased total and marketable tuber yield as compared with control. The treatment of combined significantly increased total and marketable yield in comparision to other treatments. Biostimulants significantly decreased unmarketable yield and its components (small tubers, cracked tubers and tubers with secondary growth) as compared with control. Application of biostimulants significantly increased the tuber protein percentage and concentrations of nitrogen, phosphorus (except amino acid-K, amino acid-Ca and amino acid-K-Ca) and potassium tubers (except amino acid-Ca). Amino acid-Ca and the treatment of combined significantly increased dry matter content. Application of growth biostimulants (except amino acid-K and amino acid-Ca) significantly decreased concentration of tuber nitrate. According to the results, application of combined plant growth biostimulants for cultivation of Sante cultivar is recommended.

Keywords


  1. Afrasiab, H., & Iqbal, J. (2012). Biochemical and molecular characterization of somaclonal variants and induced mutants of potato (Solanum tuberosum) Cv. Desiree. Pakistan Journal Botany, 44(5), 1503-1508.
  2. Ahmad, R., Jilani, G., Arshad, M., Zahir, Z. A., & Khalid, A. (2007). Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Annals of Microbiology, 57(4), 471-479.
  3. Ahmadi, K., Abadzadeh, H., Hatemi, P., Abdeshah, H. & Kazemian, H. (2019). Agricultural statistics, first volume-horticultural and field crop, 2016-2017. Ministry of Jihad-e-Agriculture, Programing and Economic Deputy, Statistics and Information Technology Office. pp.68. (In Farsi).
  4. Aien, A. (2010). Impact of high temperature and CO2 on physiological and biochemical characteristics of potato cultivars. Ph.D. Thesis. Indian Agricultural Research Institute, New Delhi, India.
  5. Aien, A., & Jalali, A. (2018). Effect of foliar application of calcium nitrate application on yield of potato (Solanum tuberosum ) cultivars under terminal heat stress condition in south of Kerman province. Iranian Journal of Crop Sciences, 20(3), 193-208. (In Farsi).
  6. Amini, B., Farahbakhsh, M., & Kianirad, M. (2017). Study on the effects of humic acid-urea fertilizers application on some agronomic characteristics of maize (Zea Mays ). Applied Soil Research, 5(2), 31-40. (In Farsi).
  7. Aslam, M., Travis, R. L., & Rains, D. W. (2001). Differential effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Science, 160, 219–228.
  8. Bremner, J.M. & Mulvaney, C.S. (1982). Nitrogen-total. In: A.L.Page, Miller, R. H. & Keeney, D. R. (Eds), Methods of soil analysis. Part 2. Chemical and microbiological properties. (pp. 595-624.) American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
  9. Burt, T. P., Heathwaite, A. L. & Trudgill, S. T. (1993). Nitrate: Process, pattern and management. Jhon Wiley & Sons, Chichester, England.
  10. Clinton P. W. Newman R. H., & Allen R. B. (1995). Immobilization of 15N in forest litter studied by 15N CPMAS NMR spectroscopy. European Journal of Soil Science, 46(4), 551-556.
  11. Darabi, A. S. (2007). Effects of autumn and winter planting and temperature stress on total yield, marketable yield and yield components of some potato cultivars. Seed and Plant production Journal, 23, 373-386. (In Farsi).
  12. Darabi, A. (2013). Effect of planting date on total and marketable yield of potato cultivars in Khuzestan province in Iran. Seed and Plant Production Journal, 29-2(3), 369-386. (In Farsi).
  13. Darabi, A., Omidvari, S., Shafiezargar, A. R., Rafie, M. R., & Javadzadeha, M. (2018). Impact of integrated management of nitrogen fertilizers on yield and nutritional quality of potato. Journal of Plant Nutrition, 41(19), 2482-2494.
  14. Dehnavard, S., Souri, M. K. & Mardanlu, (2017). Tomato growth responses to foliar application of ammonium sulfate in hydroponic culture. Journal of Plant Nutrition, 40(3), 315-323.
  15. Disante, K. B., Fuentes, D., & Cortina, J. (2010). Sensitivity to zinc of Mediterranean woody species important for restoration. Science of The Total Environment, 408, 2216-2225.
  16. Dziugieł, T., & Wadas, W. (2020). Effect of plant biostimulants on macronutrient content in early crop potato tubers. Agronomy, 10, 1202: 1-11.
  17. El-Said, M. A. A., & Mahdy, A. Y. (2016). Response of two wheat cultivars to foliar application with amino acids under low levels of nitrogen fertilization. Middle East Journal of Agriculture Research, 5(4), 462-472.
  18. Ewing, E. E. (1997). Potato. In: Wien, H. C. (Ed.), The physiology of vegetable crops. CAB International, New York.
  19. Fazlzadeh, M., Serajamani, R., Rostamy, R., Rezaei, M., Shahriari, R., & Sadeghi, H. (2017). Comparing the effect of conventional inorganic and humic fertilizers' use on nitrate levels of potatoes: a case study of agricultural lands in Ardabil city. Journal of Health, 8(4), 416-424.
  20. Gunes, A., Inal, A., & Aktas, M. (1996). Reducing nitrate content of NFT grown winteronion plants (Allium cepa) by partial replacement of NO3 with amino acid innutrient solution. Scientia Horticulturae, 65, 203-208.
  21. Hamdi, W., Helali, L, Beji, R., & Zhani, K. (2015). Effect of levels calcium nitrate addition on potatoes fertilizer. International Research Journal of Engineering and Technology, 2(3), 2006-2013.
  22. Hamouz, K., Lachman, J., Dvorak, P., & Pivec, V. (2005). The effect of ecological growing on the potatoes yield and quality. Plant, Soil and Environment, 51(9), 397-402.
  23. Hancock, R. D., Morris, W. L., Ducreux, L. J., Morris, J. A., Usman, M., & Verrall, S. R. (2014). Physiological, biochemical and molecular responses of the potato (Solanum tuberosum) plant to moderately elevated temperature. Plant Cell Environment, 37, 439–450.
  24. Heng L. C. (1989). Influence of some humic substances on P-sorption in some Malaysian soils under rubber. Natural Rubber Resources, 4, 186-194.
  25. Hiller, L. K., Koller, D. C., & Thornton, R. E. (1985). Physilogical disorders of potato tubers. In: H. Li.Paul (Ed.) Potato physiology. Acadamic Press, Inc. New York.
  26. Jackson, S. D. (1999). Multiple signaling pathways control tuber induction in potato. Plant Physiology, 119, 1-8.
  27. Jefferies, R. A., & MacKerron, D. K. L. (1987). Observations on the incidence of tuber growth cracking in relation to weather patterns. Potato Research, 30(4), 613-623.
  28. Keeney, D. R. & Nelson, D. W. (1982). Nitrogen-inorganic forms. In: R. H. Miller & Keeney, R. H. (Eds), Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America and American Society of Agronomy.
  29. King, B. J., Siddiqi, M. Y., Ruth, T. J., Warner, R. L., & Glass, A. D., (1993). Feed back regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiology, 102, 1279-1286.
  30. Kleinhenz, M. D., & Palta, J. P. (2002). Root zone calcium modulates the response of potato plants to heat stress. Physiologia Plantarum, 115, 111-118.
  31. Kolupaev, Y., Akinina, G., & Mokrousov, A. (2005). Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress. Journal of Plant Physiology, 52, 199-204.
  32. Levy, D. & Veilleux, R. E. (2007). Adaptation of potato to high temperatures and salinity. A Review. American Journal of Potato Research, 84, 487-506.
  33. Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario –a current overview. Frontiers in Plant Science, 10(563), 1-16.
  34. Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society America Journal, 42, 421-428.
  35. Malakouti, M. J., Shahabi, A. S., & Bazargan, K. (2016). Potassium in agriculture: The role of potassium in the production of healthy agricultural (2th ed). Tehran, Iran. Moballeghan. (In Farsi).
  36. Manzoor, , Khattak, R. A., & Dost, M. (2014). Humic acid and micronutrient effects on wheat yield and nutrients uptake in salt affected soils. International Journal of Agriculture and Biology, 16, 991-995.
  37. Mohamed, A. M., (2006). Effect of some bio-chemical fertilization regimes on yield of maize. M.Sc. Thesis, Faculty of Agriculture, University of Zagazig, Egypt.
  38. Murawa, D., Banaszkiewicz, T., Majewska, E., Błaszczuk, B., & Sulima, J. (2008). Nitrate and nitrite content in selected vegetables and potatoes commercially available in Olsztyn. Bromatologia i Chemia Toksykologiczna, 41(1), 67-71.
  39. Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2015). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73(1), 18-23.
  40. Nourbakhsh, R., Mireki, GH., Aghdami, A., Razavi, M., Shejaei Aliabadi, M., Nowroozad, M., Ghanbarzadeh Alamdari, N., & Besharati, H. (2003). Maxim levels for nitrate in agricultural. Iranian Natioal Standardization Organization. 4 p. (In Farsi).
  41. Olsen, S.R. & Sommers, L.E. (1982). Phosphorus. In A.L. Page (Ed.), Methods of soil analysis Part 2 Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison.
  42. Omran, M. S., Taysee, M., El-Shinnawi, M. M., & El-Sayed, M. M. (1991). Effect of macro– and micro-nutrients application on yield and nutrients content of potatoes. Egyptian Journal of Soil Science, 31(1), 27-42.
  43. Ortiz-Lopez, A., Chang, H. C., & Bush, D. R. (2000). Amino acid transporters in plants. Biochimica et Biophysica Acta, 1465, 275-280.
  44. Palta, J. P., & Kleinhenz, M. D. (2003). Influence of supplemental calcium fertilization on potato tuber size and tuber number. Acta Horticulturae, 619, 329-336.
  45. Rafie, M., Khoshgoftarmanesh, A. M., Shariatmadari, H., Darabi, A., & Dalir, N. (2017). Influence of foliar-applied zinc in the form of mineral and complexedwith amino acids on yield and nutritional quality of onion under fieldconditions. Scientia Horticulturae, 216, 160–168.
  46. Rizk, F. A., Shaheen, A. M., Singer, S. M., & Sawan, O. A. (2013). The productivity of potato plants affected by urea fertilizer as foliar spraying and humic acid added with irrigation water. Middle East Journal of Agriculture Research, 2(2), 76-83.
  47. Roder, C., Mogor, A. F., Szilagyi-Zecchin, V. J., Gemin, L. G., & Mogor, G. (2018). Potato yield and metabolic changes by use of biofertilizer containing L-glutamic acid. Comunicata Scientiae, 9(2), 211-218.
  48. Samson, G., & Visser S. A. (1989). Surface-active effects of humic acids on potato cell membrane properties. Soil Biology and Biochemistry, 21(3), 343-347.
  49. Sarhan, T. Z. (2011). Effect of humic acid and seaweed extracts on growth and yield of potato plant (Solomun tubersum ). Desirce cv. Mesopotamia Journal of Agriculture, 39(2), 19-27.
  50. Sarojnee, D. Y., Navindra, B., & Chandrabose, S. (2009). Effect of naturally occurring amino acid stimulants on the growth and yield of hot peppers (Capsicum annum ). Journal of Animal and Plant Sciences, 5(1), 414-424.
  51. Schiavon, M., Ertani, A., & Nardi, S. (2008). Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of Agricultural and Food Chemistry, 56, 11800-11808.
  52. Shaheen, A. M., Ragab, M. E., Rizk, A., Mahmoud, S. H., Soliman, M. M., & Omar, N. M. (2019). Efeect of some active stimulants on plant growth, tubers yield and nutritional values of potato plants grown in newly reclaimed soil. The Journal of Animal and Plant Sciences, 29(1), 215-225.
  53. Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioe_ectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 1-12.
  54. Wadas, W., & Dziugiel, T. (2019). Growth and marketable potato (Solanum tuberosum) tuber yield in response to foliar application of seaweed extract and humic acids. Applied Ecology Environmental Research, 19, 557-570.
  55. Waglay, A., Karboune, S., & Alli, I. (2014). Potato protein isolates: recovery and characterization of their properties. Food Chemistery, 142, 373-382.
  56. Walch-Liu, P., Liu, L. H., Remans, T., Tester, M., & Forde, B. G. (2006). Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant and Cell Physiology, 47, 1045–1057.
  57. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
  58. Waraich, E. A., Ahmad, R., Ashraf, M. Y., & Saifullah Ahmad, M. (2011). Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica, Section B–Soil and Plant Science, 61(4), 291-304.
  59. Wolf S, Marani A, & Rudich J. (1990). Effects of temperature and photoperiod on assimilate partitioning in potato plants. Annals of Botany-London, 66, 513-520.