Effects of bitter apple and Shintosa rootstocks on phenotypic and physiological ‎properties of Citrullus lunatusc cv. Crimson Sweet under water deficit irrigation in ‎field condition

Document Type : Full Paper


1 M. Sc. Graduate, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Assistant Professor, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran


Water shortage is one of important factors limiting yield and production of some crops in arid and semi-arid areas like Iran. Grafting crops on resistance rootstock can respond better to water shortage. In order to this object response of Citrullus lunatus cv. Crimson Sweet grafted on bitter apple and Shintosa rootstocks under water deficit conditions were studied. This experiment performed as split plot in randomized complete block design with four irrigation regime, 100, 80, 60 and 40 % of available water as main plot and grafting on bitter apple (Citrullus colocynthis (L.) Schrad) and Shintosa (Cucurbita maxima Duch. × Cucurbita moschata Duch.) as sub plot with three replications. Based on the results, some traits such as fruit firmness, total soluble solids, total yield, root length, number of roots, flavonoids contents, antioxidant capacity and total phenolic compounds increased significantly in plants grafted on bitter apple rootstock comoare to other plants, under water deficiency. According to results, bitter apple could be suggested as suitable rootstock under low irrigation conditions, maintaining acceptable yield and fruit quality attributes compare to Shintosa.


  1. Abbas, S. R., Ahmad, S. D., Sabir, S. M., Wajid, A., Aiya, B., Abbas, M. R., & Sabir, H. S. (2013). Screening of drough tolerant genotypes of sugarcane through biochemical markers against polyethylene glycol. International Journal of Scientific and Engineering Research, 4, 980-988.
  2. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
  3. Begg, J. E. (1980). Morphological adaptations of leaves to water stress. Adaptation of plants to water and high temperature stress, 97-13 Springer .
  4. Bertucci, M. B., Suchoff, D. H., Jennings, K. M., Monks, D. W., Gunter, C. C., Schultheis, J. R., & Louws, F. J. (2018). Comparison of root system morphology of cucurbit rootstocks for use in watermelon grafting. HortTechnology, 28(5), 629-636.
  5. Bigdelo, M., Hassandokht, M. R., Rouphael, Y., Colla, G., Soltani, F., & Salehi, R. (2017). Evaluation of bitter apple ('Citrullus colocynthis' (L.) Schrad) as potential rootstock for watermelon. Australian Journal of Crop Science, 11(6), 727.
  6. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178-182.
  7. Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A., & Rea, E. (2010). The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environmental and Experimental Botany, 68,283-291.
  8. Dane, F., Liu, J., & Zhang, C. (2007). Phylogeography of the bitter apple, Citrullus colocynthis. Genetic Resources and Crop Evolution, 54, 327-336.
  9. De Beer, H. (1985). Silver leaf bitter apple causes concern. Farming in South Africa, Weeds, A, 6, 1-4.
  10. Dichio, B., Romano, M., Nuzzu, V. & Xiloyannis, C. (2002). Soil water availability. Acta Horticulturae, 586. 419-422.
  11. Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 83(5), 369-382.
  12. Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A., Tadmor, Y., & Cohen, R. (2014). Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Scientia Horticulturae, 165, 196-202.
  13. Fredes, A., Sales, C., Barreda, M., Valcárcel, M., Roselló, S., & Beltrán, J. (2016). Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography–mass spectrometry determination. Food Chemistry, 190, 689-700.
  14. Ghahreman, A. (1975-2000). Colored Flora of Iran. Institute of Forestries and Grasslands. 1-24. (In Farsi).
  15. Gichimu, B. M., Owuor, B. O., Mwai, G. N., & Dida, M. M. (2009). Morphological characterization of some wild and cultivated watermelon (Citrullus) accessions in Kenya. ARPN Journal of Agricultural and Biological Science,4,10-18.
  16. Habibi, D., Boojar, M. M., Mahmoudi, A., Ardakani, M. R., & Taleghani, D. (2004). Antioxidative enzymes in sunflower subjected to drought stress. In 4th International Crop Science Congress, Australia. 26 Sept.-1 Oct. , Brisben, Australia, pp 544-548.
  17. Huang, Y., Zhao, L., Kong, Q., Cheng, F., Niu, M., Xie, J., & Bie, Z. (2016). Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticultural Plant Journal, 2(2), 105-113.
  18. Jaleel, C. A., Manivannan, P. A. R. A. M. A. S. I. V. A. M., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R. A. M. A. M. U. R. T. H. Y., & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11,100-105.
  19. Kirnak, H., Higgs, D., Kaya, C., & Tas, I. (2005). Effects of irrigation and nitrogen rates on growth, yield, and quality of muskmelon in semiarid regions. Journal of Plant Nutrition, 28,621-638.
  20. Kyriacou, M. C., Rouphael, Y., Colla, G., Zrenner, R., & Schwarz, D. (2017). Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science. 8. 1-23.
  21. Leskovar, D. I., Perkins-Veazie, P., & Meiri, A. (1999). Deficit irrigation affects yield and quality of triploid and diploid watermelon. HortScience, 34,523-528.
  22. Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F., & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47(4), 417-426.
  23. Liu, H., Zhu, Z., & Diao, M. (2006). Characteristics of the sugar metabolism in leaves and fruits of grafted watermelon during fruit development. Plant Physiology Communications, 42(5), 835.
  24. López-Serrano, L., Canet-Sanchis, G., Vuletin Selak, G., Penella, C., San Bautista, A., López-Galarza, S., & Calatayud, Á. (2019). Pepper rootstock and scion physiological responses under drought stress. Frontiers in Plant Science, 10, 1-13.
  25. Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., & Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2), 112-118.
  26. Maynard, D. N. (2001). Watermelons: characteristics, production, and marketing. ASHS Press.
  27. Miller, G., Khalilian, A., Adelberg, J. W., Farahani, H. J., Hassell, R. L., & Wells, C. E. (2013). Grafted watermelon root length density and distribution under different soil moisture treatments. HortScience, 48(8), 1021-1026.
  28. Nehdi, I. A., Sbihi, H., Tan, C. P., & Al-Resayes, S. I. (2013). Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chemistry, 136(2), 348-353.
  29. Noor, R. S., Wang, Z., Umair, M., Yaseen, M., Ameen, M., Rehman, S. U., & Sun, Y. (2019). Interactive effects of grafting techniques and scion-rootstocks combinations on vegetative growth, yield and quality of cucumber (Cucumis sativus). Agronomy, 9(6), 1-26.
  30. Nowak, M., Kleinwaechter, M., Manderscheid, R., Weigel, H. J., & Selmar, D. (2010). Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. Journal of Applied Botany and Food Quality, 83(2), 133-136.
  31. Oda, J. L. M., & Lee, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticulture Review, 28, 61-124.
  32. Ortega, D. G., DG, O., & DW, K. (1990). Water stress effects on stored pickling cucumber. Jouran of Agriculture and Food Chemistry, 38, 2185-2191.
  33. Rouphael, Y., Cardarelli, M., Colla, G., & Rea, E. (2008). Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43(3), 730-736.
  34. Sánchez, F. J., Manzanares, M., de Andres, E. F., Tenorio, J. L., & Ayerbe, L. (1998). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59(3), 225-235.
  35. Sánchez-Romera, B., Porcel, R., Ruiz-Lozano, J. M., & Aroca, R. (2018). Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside; SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester; L-NAME) on lettuce plants under well watered and drought conditions. Symbiosis, 74(1), 11-20.
  36. Shanker, A., & Venkateswarlu, B. (Eds.). (2011). Abiotic stress in plants: Mechanisms and adaptations. Rijeka,
  37. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  38. Soltani, F., Shajari, M., & Noory, H. (2018). trans piration of some watermelon accessions at drought stress conditions under. Iranian Journal of Horticultural Science, 49(2), 351-363. (In Farsi).
  39. Tadolini, B., Juliano, C., Piu, L., Franconi, F., & Cabrini, L. (2000). Resveratrol inhibition of lipid peroxidation. Free Radical Research, 33(1), 105-114.
  40. Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., Arena, S., & Grillo, S. (2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum). BMC Plant Biology, 17(1), 1-14.
  41. Taofiq, O., Heleno, S. A., Calhelha, R. C., Alves, M. J., Barros, L., González-Paramás, A. M., & Ferreira, I. C. (2017). The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 108, 139-147.
  42. Yoosefzadeh Najafabadi, M., Soltani, F., Noory, H., & Díaz-Pérez, J. C. (2018). Growth, yield and enzyme activity response of watermelon accessions exposed to irrigation water deficit. International Journal of Vegetable Science, 24(4), 323-337.
  43. Zushi, K., & Matsuzoe, N. (1998). Effect of soil water deficit on vitamin C, sugar, organic acid, amino acid and carotene contents of large-fruited tomatoes. Journal of the Japanese Society for Horticultural Science, 67(6), 927-933.