Effects of leaf nutrient contents on photosynthetic indices in Olives tree

Document Type : Full Paper

Authors

1 Ph.D. Student, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran‎

2 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran‎

3 Associate Professor, Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

4 Assistant Professor, Research Department, Zanjan Agriculture and Natural Resources Research and Education Center, Agricultural ‎Research, Education and Extension Organization (AREEO), Zanjan, Iran

Abstract

The development of olive cultivation needs detailed studies to achieve the maximum yield and product quality by applying management plans including nutrition. In this research, the interactions of gas exchange and photosynthetic parameters were investigated with leaf nutrients contents of olive trees (cv. ‘Arbequina’) in super high density (SHD) cultivation under saline and calcareous soils condition in Tarom Sofla, Zanjan, Iran. The nutritional disorders and their effects on photosynthetic indices were revealed using the compositional nutrient diagnosis (CND) index micronutrients and macronutrients status. Finally, principal component analysis (PCA) was used to determine, the effects of all parameters on yield. The results showed that photosynthetic parameters had a significant positive correlation with nutrients such as zinc, phosphorus, and copper. Photosynthesis, transpiration, and stomatal conductance had highly correlated with yield of olive trees, which are important factors in increasing yields. The final CNDr2 index showed nutritional disorders in most orchards in the low yielding group. The average order of nutrient requirement is Ca> Mg> N> P> K in macronutrients and Zn> B> Mn> Cu in micronutrients in the group of low yielding orchards. The principal component analysis showed that highest yield of olive trees had a higher positive correlation than other orchards with P and K in macronutrients and Zn, and Cu in micronutrients; this increased the rate of photosynthesis and yield. PCA also showed the hidden effects of Ca and Mn deficiency on the reduction of photosynthetic parameters and yield.

Keywords


  1. Ajani, A., Soleimani, A., Zeinanloo, A. A. & Seifi, E. (2019). The evaluation of physiological and biochemical traits of olive trees cvs. Zard and ‎Direh under heat stress. Iranian Journal of Horticultural Science, 51(4), 785-795. (In Farsi).
  2. Arrobas, M. P., Lopes, J. I., Pavão, F. M., Cabanas, J. E., & Rodrigues, M. Â. (2010). Comparative boron nutritional diagnosis for olive based on july and january leaf samplings. Communications in Soil Science and Plant Analysis, 41(6), 709-720.
  3. Baron, D., Amaro, A. C. E., Campos, F. G., Boaro, C. S. F., & Ferreira, G. (2018). Plant physiological responses to nutrient solution: An overview. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, & M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress (pp. 415-425): Academic Press.
  4. Boussadia, O., Steppe, K., Zgallai, H., Hadj, S. B. E., Braham, M., Lemeur, R., & Labeke, M. C. V. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars 'Meski' and 'Koroneiki'. Scientia Horticulturae, 123(3), 336-342.
  5. Centeno, A., & Gomez-del-Campo, M. (2011). Response of mature olive trees with adequate leaf nutrient status to additional nitrogen, phosphorus, and potassium fertilization. Acta Horticulturae, 888(888), 277-280.
  6. Chartzoulakis, K. (2005). Salinity and olive: Growth, salt tolerance, photosynthesis and yield. Agricultural Water Management, 78, 108-121.
  7. Chatzissavvidis, C., & Therios, I. (2010). Response of four olive (Olea europaea) cultivars to six B concentrations: Growth performance, nutrient status and gas exchange parameters. Scientia Horticulturae, 127(1), 29-38.
  8. Connor, D. J., & Fereres, E. (2010). The physiology of adaptation and yield expression in olive. Horticultural Reviews (Vol. J. Janick (Ed.), pp. 155-229).
  9. Connor, D. J., Gómez-del-Campo, M., Rousseaux, M. C., & Searles, P. S. (2014). Structure, management and productivity of hedgerow olive orchards: A review. Scientia Horticulturae, 169(1), 71-93.
  10. Dias, K. G. d. L., Guimarães, P. T. G., Neto, A. E. F., Silveira, H. R. O. D., & Lacerda, J. J. D. J. (2017). Effect of magnesium on gas exchange and photosynthetic efficiency of coffee plants grown under different light levels. Agriculture, 7(10), 85.
  11. Fan, T., Stewart, B. A., Yong, W., Junjie, L., & Guangye, Z. (2005). Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agriculture, Ecosystems & Environment, 106(4), 313-329.
  12. Farinelli, D., Ruffolo, M., Boco, M., & Tombesi, A. (2012). Yield efficiency and mechanical harvesting with trunk shaker of some international olive cultivars. Acta Horticulturae, 949(1), 379-384.
  13. Fernández-Escobar, R., Marin, L., Sánchez-Zamora, M. A., García-Novelo, J. M., Molina-Soria, C., & Parra, M. A. (2009). Long-term effects of N fertilization on cropping and growth of olive trees and on N accumulation in soil profile. European Journal of Agronomy, 31(4), 223-232.
  14. Ferreira, I. Q., Rodrigues, M. Â., Moutinho-Pereira, J. M., Correia, C. M., & Arrobas, M. (2018). Olive tree response to applied phosphorus in field and pot experiments. Scientia Horticulturae, 234(1), 236-244.
  15. Follett, R. H., Murphy, L. S., & Donahue, R. L. (1981). Fertilizers and Soil Amendments: Prentice-Hall.
  16. Gago, J., Daloso, D. M., Carriquí, M., Nadal, M., Morales, M., Araújo, W. L. & Flexas, J. (2020). Mesophyll conductance: the leaf corridors for photosynthesis. Biochemical Society Transactions, 48(2), 429-439.
  17. Gavalas, N. A., & Clark, H. E. (1971). On the role of manganese in photosynthesis. Plant Physiology, 47(1), 139.
  18. Godini, A., Vivaldi, G. A., & Camposeo, S. (2011). Olive cultivars field-tested in super-high-density system in Southern Italy. California Agriculture, 65(1), 39- 40.
  19. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
  20. Karim, A., Ebadzadeh, H., Hatami, F., Hosseinpor, R., & Abdshahi, H. (2019). Agricultural statistical report (Vol. 3): Ministry of Agriculture, Deputy of Planning and Economics, Technology and Communication Center. (In Farsi).
  21. Khiari, L., Parent, L., & Tremblay, N. (2001a). Critical compositional nutrient indexes for sweet corn at early growth stage. Agronomy Journal, 93, 809-814.
  22. Khiari, L., Parent, L., & Tremblay, N. (2001b). The phosphorus compositional nutrient diagnosis range for potato. Agronomy Journal, 93(4), 815-819.
  23. Khiari, L., Parent, L., & Tremblay, N. (2001c). Selecting the high-yield subpopulation for diagnosing nutrient imbalance in crops. Agronomy Journal, 93(4), 802-808.
  24. Longstreth, D. J., & Nobel, P. S. (1980). Nutrient influences on ieaf photosynthesis: effects of nitrogen, phosphorus, and potassium for gossypium hirsutum l. Plant Physiology, 65(3), 541-543.
  25. Marschner, H. (2012). Preface to first edition. In P. Marschner (Ed.), Marschner's Mineral Nutrition of Higher Plants (Third Edition) (pp. vii). San Diego: Academic Press.
  26. Medrano, H., Tomás, M., Martorell, S., Flexas, J., Hernández, E., Rosselló, J. & Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3(3), 220-228.
  27. Melgar, J., Mohamed, Y., Serrano, N., García-Galavís, P. A., Navarro, C., Parra, M. A. & Fernández-Escobar, R. (2009). Long term responses of olive trees to salinity. Agricultural Water Management, 96(7), 1105-1113.
  28. Milošević, B., & Miloševič, N. (2011). Diagnose apricot nutritional status according to foliar analysis. Journal of Plant, Soil and Environment, 57(7), 301-306.
  29. Morais, T., Prado, R., Traspadini, E., Wadt, P., Paula, R., & Rocha, A. (2019). Efficiency of the CL, DRIS and CND Methods in Assessing the Nutritional Status of Eucalyptus spp. Rooted Cuttings. Forests, 10(9), 786- 804.
  30. Papachatzis, A., Kalorizou, H., Arvanitis, T., Gougoulias, N., Vagelas, I., & Kakogiannos, C. (2012). Super high density (SHD) olive growing system in Greece: Quantity and quality assessment. In: Proceedings of 4th International Congress on Olive culture and Biotechnology of olive tree Products 31 Oct- 4 Nov., Chania, crete, Greece, pp. 211-214.
  31. Saidana, D., Braham, M., Boujnah, D., Mariem, F. B., Ammari, S., & El Hadj, S. B. (2009). Nutrient stress, ecophysiological, and metabolic aspects of olive tree cultivars. Journal of Plant Nutrition, 32(1), 129-145.
  32. Samuelsson, G., & Öquist, G. (1980). Effects of copper chloride on photosynthetic electron transport and chlorophyll-protein complexes of Spinacia oleracea. Plant and Cell Physiology, 21(3), 445-454.
  33. Sanzani, S., Schena, L., Nigro, F., Sergeeva, V., Ippolito, A., & M.G, S. (2012). Abiotic diseases of olive. Journal of Plant Pathology, 94(3), 469- 491.
  34. Serra, A., Marchetti, M., Gonçalves, M., Ensinas, S., Labaied, M., Silva, E. & Matos, F. (2016). Nutritional status of cotton plant assessed by compositional nutrient diagnosis (CND). In I. Y. Abdurakhmonov (Ed.): Cotton Research. (pp. 63-86) IntechOpen.
  35. Souza, F. B. M. d., Coelho, V. A. T., Pio, R., Rodas, C. L., Silva, I. P. d., Melo, E. T. d., & Farias, D. d. H. (2019). Visual symptoms and nutritional deficiencies in olive plants subjected to nutrient deprivation. Acta Scientiarum. Agronomy, 41(1), 1-11.
  36. Sun, Y., Yang, J., Wang, H., Zu, C., Tan, L., & Wu, G. (2015). Standardization of leaf sampling technique in jackfruit nutrient status diagnosis. Agricultural Sciences, 6(2), 232-237.
  37. Taiz, L., Zeige, E., Moller, I. M., & Murphy, A. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates, Inc. 761 pp.
  38. Toplu, C., Uygur, V., & Yildiz, E. (2009). Leaf mineral momposition of olive varieties and their relation to yield and adaptation ability. Journal of Plant Nutrition, 32(9), 1560-1573.
  39. Vossen, P. M. (2007). Organic olive production manual: University of California, Agricultural and Natural Resources, Communication Services.
  40. Xu, M., Zhang, J., Wu, F., & Wang, X. (2015). Nutritional diagnosis for apple by DRIS, CND and DOP. Advance Journal of Food Science and Technology, 7(3), 266-273.
  41. Yao, F., Coquery, J., & Lê Cao, K. A. (2012). Independent principal component analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics, 13(1), 24- 39.
  42. Zhu, M. Q., Xu, W. Z., Wen, J. L., Zhu, Y. H., Li, Y., Su, Y.-Q. & Sun, R. C. (2017). Dynamic changes of photosynthetic properties and chemical compositions of Eucommia ulmoides oliver under two planting models. Industrial Crops and Products, 96(1), 46-56.
  43. Zeinanloo, A. A., Arji, I., Taslimpoor, M. R., Ramezani Malekverdi, M. & Azimi, M. (2015). The effects of cultivar and climate on fatty acids compounds of olive (Olea europea) oil. Iranian Journal of Horticultural Science, 46(2), 233-242. (In Farsi).