Assessment of genetic diversity in‏ ‏Corylus avellana L. by ISSR marker and ‎retrotransposon in Amlash region

Document Type : Full Paper


1 M.Sc. Student,, Department of Agricultural Biotechnolog, Faculty of Agricultural Sciences, University ‎of Guilan, Rasht, Iran

2 Assistant Professor, Department of Agricultural Biotechnolog, Faculty of Agricultural Sciences, University of Guilan, ‎Rasht, Iran

3 Professor, Department of Agricultural Biotechnolog, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran


In this study, the genetic diversity of 63 hazelnut genotypes was evaluated using 10 ISSR primers, two retrotransposon markers and seven combined ISSR and retrotransposon primers, which of the seven combined primers, only three showed scorable bands and other primers did not form a band. The 15 primers used in this study were able to create a total of 116 polymorphic bands. The UBC822 produced the highest number of polymorphic bands with 14 bands, the UBC814 with 3 bands had the least number of bands. The polymorphic information content and marker index of primers ranged from 0.18 to 0.44 as well as 0.50 to 11.31 respectively. Principal coordinate analysis showed that the first three components were able to explain a total of 37.12% of the total variance. COMPLET cluster analysis divided 63 studied genotypes into seven groups, which were 8, 13, 7, 3, 3, 13, 16 genotypes, respectively. The accuracy of grouping obtained from cluster analysis was confirmed by the Fisher linear focal detection function with 0.81 percent. Overall, primers UBC822, UBC813, TOS-2 and TOS-1+TOS2 can be introduced as useful and desirable for separation of genotypes and cultivars of hazelnut.


  1. Amini-Nouri, F. & Ziarati, P. (2015). Chemical composition of native hazelnut (Corylus avellana) varieties in Iran, association with ecological conditions. Bioscience & Biotechnology Research Asia, 12 (3), 2053-60.
  2. Andeden, E. E., S Baloch, F., Derya, M., Kilian, B., & Özkan. H. (2013). iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species, Journal of Plant Biochemistry and Biotechnology, 22 (4), 453-66.
  3. Balik, H., I. (2021). Bioactive Compounds and Fatty Acid Composition of New Turkish Hazelnut Cultivars, International Journal of Fruit Science, 21 (1), 106-114.
  4. Campa, A., Trabanco, N., Pérez‐Vega, E., Rovira, M., & Ferreira, J. J. (2011). Genetic relationship between cultivated and wild hazelnuts (Corylus avellana) collected in northern Spain, Plant Breeding, 130 (3), 360-66.
  5. Crews, C., Hough, P., Godward, J., Brereton, P., Lees, M., Guiet, S., & Winkelmann, W. (2005). Study of the main constituents of some authentic hazelnut oils, Journal of Agricultural and Food Chemistry, 53 (12), 4843-52.
  6. Enescu, CM, Durrant, T.H., Rigo, D., & Caudullo, G. (2016). Corylus avellana in Europe: distribution, habitat, usage and threats, European Atlas of Forest Tree Species, 54, 86-87.
  7. Erdogan, V., Koksal, Ilhami, A., & Aygun, A. (2010). Assessment of genetic relationships among Turkish hazelnut (Corylus avellana) cultivars by RAPD markers, Romanian Biotechnological Letters, 15 (5): 591-601.
  8. Felbinger, C., Kutzsche, F., Mönkediek, S., & Fischer, M. (2020). Genetic profiling: Differentiation and identification of hazelnut cultivars (Corylus avellana) using RAPD-PCR, Food Control, 107, 106791.
  9. Ferreira, J.J., Garcia‐González, C., Tous, J., & Rovira, M. (2010). Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern Spain, Plant Breeding, 129, 435-441.
  10. Feschotte, C., & Pritham, E. J. (2007). DNA transposons and the evolution of eukaryotic genomes, Annual Review of Genetics, 41: 331-368.
  11. Ghonaim, M., Kalendar, R., Barakat, H., Elsherif, N., Ashry, N., & Schulman, A.H. (2020). High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis, Molecular Biology Reports, 47, 1589-1603.
  12. Henareh, M., Abdollahi Mandoulakani, B., & Dursun, A. (2018). Association analysis of morphological traits in tomato using ISSR markers, Iranian Journal of Horticultural Science, 49 (1), 171-181. (in Farsi)
  13. Houshyarfard, M. (2020). Survey on Etiology and Distribution of Dieback/Decline of Hazelnuts (Corylus avellana) in Northern Iran, Journal of Nuts, 11 (3), 245-256.
  14. Kalendar, R. (2011). The use of retrotransposon-based molecular markers to analyze genetic diversity, Ratarstvo I Povrtarstvo, 48(2), 261-274.
  15. Katarzyna, K., & Gantner, M. (2020). Morphological Traits and Chemical Composition of Hazelnut from Different Geographical, Agriculture, 10 (9), 375.
  16. Martins, S., Silva, A.P., Santos, A.A., & Carnide, V. (2009). Diversity in hazelnut using RAPD and ISSR markers. In VII International Congress on Hazelnut, 845, 145-150.
  17. Martins, S., Simões, F., Matos, J., Paula Silva, A., & Carnide, V. (2014). Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers, Plant Systematics and Evolution, 300, 1035-1046.
  18. Mehle, N., Nejc, J., Miro, M., Miklavc, J., Matko, B., Rot, M., Ferlež Rus, A., Brus, R., & Dermastia, M. (2019). Phytoplasmas associated with declining of hazelnut (Corylus avellana) in Slovenia, European Journal of Plant Pathology, 155, 1117-1132.
  19. Mehlenbacher, S. A. (1997). Revised dominance hierarchy for S-alleles in Corylus avellanaTheoretical and Applied Genetics, 94, 360-366.‏
  20. Mohammadzedeh, M., Fattahi, R., Zamani, Z., & Khadivi-Khub, A. (2014). Genetic identity and relationships of hazelnut (Corylus avellana) landraces as revealed by morphological characteristics and molecular markers, Scientia Horticulturae, 167, 17-26.
  21. Mohsenzadeh Golfazani, M., Mohammad, F., Hasani Kumleh S.H. & Samizadeh Lahiji H. (2016). Grouping of some canola genotypes in various drought stress treatment in Germination Stages based on multivariate statistical methods. Iranian Journal of Seed Sciences and Research, 3 (2), 53-65. (in Farsi).
  22. Mohsenzadeh Golfazani, M., Samizade lahiji, H., Alami, A., Shoayi Deylami, M. & Talesh Sasani S. (2012). Study of Genetic Diversity of Flue-Cured Tobacco (Nicotiana Tabacum) Genotypes using ISSR and Retrotransposon Markers. Iranian Journal of Field Crop Science, 43 (2), 371-380. (in Farsi).
  23. Murray, M.G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA, Nucleic Acids Research, 8 (19), 4321-4326.
  24. Nei, M. (1972). Genetic distance between populations, The American Naturalist, 106, 283-92.
  25. Nezamivand Chegini, M., Samizadeh Lahiji, H., Ramezani Malakroodi, M., & Mohsenzadeh Golfazani, M. (2016). Assessment of genetic diversity among four olive cultivars using morphological markers, Journal of Applied Crop Breeding, 3 (2), 201-214. (in Farsi)
  26. Ozdemir, F. & Akinci, I. (2004). Physical and nutritional properties of four major commercial Turkish hazelnut varieties. Journal of Food Enginering, 63 (3), 341-347.
  27. Öztürk, S. C., İrfan Balık, H., Kayalak Balık, S., Kızılcı, G., Duyar, O., Doğanlar, S., & Frary, A. (2017). Molecular genetic diversity of the Turkish national hazelnut collection and selection of a core set, Tree Genetics and Genomes, 13, 113.
  28. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Molecular Breeding, 2, 225-238.
  29. Qiang, L.I., Qing-Chang, L., Hong, Z., Dai-Fu, M.A., Xin, W., Xue-Qin, L., & Yu-Ping, W. (2008). Genetic diversity in main parents of sweetpotato in China as revealed by ISSR markers, Acta Agronomica Sinica, 34, 972-977.
  30. Rajabi, A., Samizadeh Lahiji, H., & Mohsenzadeh Golfazani, M. (2022). Assessment of genetic diversity in Citrus sinensis by ISSR marker and retrotransposon, Journal of Plant Production, 29 (2), 119-139. (in Farsi)
  31. Razi, M., Amiri, M., Darvishzadeh, R., Doulati Baneh, H., & Martinez Gomez, P. (2019). Evaluation of genetic diversity in local cultivars and genotypes of grape (Vitis vinifera) using ISSR Markers, Iranian Journal of Horticultural Science, 50 (1), 197-207. (in Farsi)
  32. Reddy, M., Pradeep, N., & Siddiq, E.A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 128, 9-17.
  33. Ren, N., & Timko, M. P. (2001). AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species, Genome, 44, 559-571.
  34. Russell, J.R., Fuller, J.D., Macaulay, M., Hatz, B.G., Jahoor, A., Powell, W., & Waugh, R. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs, Theoretical and Applied Genetics, 95, 714-722.
  35. Santhosh, W.G., Shobha, D. & Melwyn, G.S. (2009). Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers, Scientia Horticulturae, 120, 411-17.
  36. Shannon, C. E. (1948). A mathematical theory of communication, The Bell System Technical Journal, 27, 379-423.
  37. Silvestri, C., Bacchetta, L., Bellincontro, A., & Cristofori, V. (2021). Advances in cultivar choice, hazelnut orchard management, and nut storage to enhance product quality and safety: an overview, Journal of the Science of Food and Agriculture, 101, 27-43.
  38. Sorkheh, K., Amirbakhtiar, N., & Ercisli, S. (2016). Potential Start Codon Targeted (SCoT) and Inter-retrotransposon Amplified Polymorphism (IRAP) Markers for Evaluation of Genetic Diversity and Conservation of Wild Pistacia Species Population, Biochemical Genetics, 54, 368-387.
  39. Vahdani Kia, F. S., Samiezadeh lahiji, H., Zahravi, M. & Mohsenzadeh Golfazani, M. (2021). Evaluating genetic diversity of some wheat genotypes using SSR and ISSR molecular markers. Cereal Research, 11 (1), 43-54. (in Farsi)
  40. Vuorinen, A. L., Kalendar, R., Fahima, T., Korpelainen, H., Nevo, E., & Schulman, A. H. (2018). Retrotransposon-based genetic diversity assessment in wild emmer wheat (Triticum turgidum dicoccoides), Agronomy, 8, 107.