Effects of exogenous nitric oxide on cadmium toxicity by studying some of ‎morphophysiological ‎and biochemical characteristics of cock's comb (Celosia ‎argentea var. plumosa)‎

Document Type : Full Paper


1 Ph. D. Candidate, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Associate Professor, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

4 Assistant Professor, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran‎


In order to evaluate the effect of sodium nitroprusside (SNP) as nitric oxide donor (NO) on some morphophysiological and biochemical characteristics of cock's comb plant under cadmium stress, this experiment was designed as a complete randomized factorial design with three replications (pot with sand loamy soil) in greenhouse condition (temperature 25-30 °C, relative humidity 60%, and a 14/10 light–dark cycle) in spring and summer 2017. The first factor included two levels of Cd (30 and 60 mg.kg-1) with noncontaminated soil, and the second factor included three levels of SNPfoliar application (0,100 and 200μM). The results showed that with increasing Cd concentration, the activity of antioxidant enzymes, amount of hydrogen peroxide (H2O2), malondialdehyde (MDA), Cd in roots and shoots  increased, while the content of total chlorophyll, shoot and root dry weight decreased. On the other hand, the pplication of 100 μM SNP at the highest level of cadmium, compared to non-application, dramatically increased root dry weight (2.4 fold), cadmium concentration in the roots (51%), total chlorophyll (50%), proline (74%), and also, decreased H2O2 (28%) and MDA (41%). It seems that the application of this material caused further uptake of cadmium in the roots and prevent its translocation towards the shoots, can improve the adverse effects of cadmium by a reduction in oxidative damage.


  1. Abnosi, M., Amirjani, M., Mahdiyeh, M. & Moradipoor, H. (2015). Biochemical and cellular response of Catharanthus roseus callus cells to cadmium toxicity. Journal of Genetic Resources, 1(2), 101-114.
  2. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
  3. Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L. & Alam, P. (2017). Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Environmental Science and Pollution Research, 255(1), 79-93.
  4. Bates, L. S., Waldern, R. P. & Tears, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
  5. Beata, J., Ryszard, K. & Michał, M. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environmental Geochemistry and Health, 40 (6), 2395–2420.
  6. Bi, D., Yuan, G., Wei. J., Xiao, L., Feng, L, Meng F. & Wang, J. (2019). A soluble humic substance for the simultaneous removal of cadmium and arsenic from contaminated soils. International Journal of Environmental Research and Public Health, 16(24), p.4999.
  7. Cay, S. (2016). Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. Environmental Monitoring and Assessment, 188(6), p.320.
  8. Chen, W., Dong, Y., Hu, G. & Bai, X. (2018). Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass. Journal of Soil Science and Plant Nutrition, 18(1), 129-143.
  9. Cunningham, S. D. & David, W. O. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715-719.
  10. Dong, Y., Chen, W., Bai, X., Liu, F. & Wan, Y. (2019). Effects of exogenous nitric oxide and 24-epibrassinolide on the physiological characteristics of peanut seedlings under cadmium stress. Pedosphere, 29(1), 45-59.
  11. Emami, A. (1996). Methods of plant analysis. Agricultural Research and Education Organization. Soil & Water Research Institute, Agricultural Research and Education Organization, Ministry of Agriculture, Tehran, Iran. Publication No. 982. (In Farsi).
  12. Ghosh, R. & Roy, S. (2019). Cadmium toxicity in plants unveiling the physicochemical and molecular aspects. In: Hasanuzzaman et al (Ed.), Cadmium Toxicity and Tolerance in Plants. (pp. 223-246.) Academic Press.
  13. Golchin, A., Mosalla, L. & Khadem Moghdam Igdelou, N. (2019). Investigation of cadmium uptake and transfer ability of three ornamental plants for remediation of cadmium contaminated soils. Iranian Journal of Soil and Water Research, 50, 2401-2659. (In Farsi).
  14. Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198.
  15. Hojati, M. & Modarres-sanavy, S. A. M. (2017). Cadmium and copper induced changes in growth, oxidative metabolism and terpenoids of Tanacetum parthenium. Environmental Science and Pollution Research, 24(13), 12261-12272.
  16. Huang, X., Duan, S., Wu, Q., Yu, M. & Shabala, S. (2020). Reducing cadmium accumulation in plants: structure-function relations and tissue-specific. Planta, 9 (2), 223.
  17. Khan, M. I. R., Nazir, F., Asgher, M., Per, T. S. & Khan, N. A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology, 173, 9-18.
  18. Leterrier, M., Valderrama, R., Chaki, M. & Airaki, M. (2012). Function of nitric oxide under environmental stress conditions. In: Khan et al (Ed), Phytohormones and Abiotic Stress Tolerance in Plants. (pp. 99-113.) Springer.
  19. Lichtenthaler, H. )1987(. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 148, 350-382.
  20. Lin, Ya-Fen. & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences,69(19), 3187-3206.
  21. Lindsay, W. L. & Norvell, W. A.(1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42(3), 421-428.
  22. Liu, J., Mo, L., Zhang, X., Yao, S. & Wang, Y. (2018). Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea International Journal of Phytoremediation, 20(11), 1106-1112.
  23. Liu, S., Yang, R., Pan, Y., Ma, M., Pan, J., Zhao, Y. & Zhang, L. (2015). Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens plants. Ecotoxicology and Environmental Safety, 119, 35-46.
  24. Lombardo, M. C., Graziano, M., Polacco, J. C. & Lamattina, L. (2006). Nitric oxide functions as a positive regulator of root hair development. Plant Signaling and Behavior, 1(1), 28-33.
  25. Mahdavi, M., Esmaielpour, B. & Fatemi, H. (2018). Effect of Silicon nutrition on growth and physiology of spearmint (Mentha spicata) under cadmium stress condition. Iranian Journal of Horticultural Science, 49, 183-196. (In Farsi).
  26. Abnosi, M., Amirjani, M., Mahdiyeh, M. & Moradipoor, H. (2015). Biochemical and cellular response of Catharanthus roseus callus cells to cadmium toxicity. Journal of Genetic Resources, 1(2), 101-114.
  27. Nakbanpote, W., Meesungnoen, O. & Prasad, M. N. (2016). Potential of ornamental plants for phytoremediation of heavy metals and income generation. In: M. N.V. Prasad (Ed), Bioremediation and Bioeconomy. (pp. 179-217.) Elsevier.
  28. Nahar, K., Hasanuzzaman, M., Alam, M. M., Rahman, A., Suzuki, T. & Fujita, M. (2016). Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology and Environmental Safety, 126, 245-255.
  29. Plewa, M. J., Smith, S. R. & Wagner, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research, 247(1), 57-64.
  30. Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101(3), 477-482.
  31. Shanying, H. E., Xiaoe, Y., He, Z. & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere: An International Journal, 27(3), 421-438.
  32. Sharma, A., Soares, C., Sousa, B., Martins, M. & Kumar, V. (2020). Nitric oxide-mediated regulation of oxidative stress in plants under metal stress : a review on molecular and biochemical aspect. Physiologia Plantarum, 168, 318-344.
  33. Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985-999.
  34. Valizadeh ghale beig, A., Nemati, S. H., Emami, H. & Aroie, H. (2021). The effect of glayol biochar on some of morphological traits and heavy metals ‎uptake in lettuce (Lactuca sativa cv Syaho)‎. Iranian Journal of Horticultural Science, 51, 773-784. (In Farsi).
  35. Velikova, V., Yordanov, I. & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of endogenous polyamines. Plant Science, 151(1), 59-66.
  36. Verbruggen, N., Juraniec, M., Baliardini, C. & Meyer, C. L. (2013). Tolerance to cadmium in plants: The special case of hyperaccumulators. BioMetals, 26(4), 633-638.
  37. Verslues, P. E. & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book/American Society of Plant Biologists8.
  38. Wang, Y., Yan, A., Dai, J., Wang, N. & Wu, D. (2012). Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator. Environmental Monitoring and Assessment, 184(2), 929-937.
  39. Wang, Q., Liang, X., Dong, Y., Fan, Z. & Fan, J. H. Á. Z. (2013). Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation, 69(1), 11-20.
  40. Wang, Y., Dong, Y. Wang, J. & Cui, X. (2016). Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress. Environmental Science and Pollution Research, 23(5), 4826-4836.
  41. Wei, J., Lai, H. & Chen, Z. (2012). Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana. Ecotoxicology and Environmental Safety, 84, 173-178.
  42. Wei, L., Zhang, J., Wang, C. & Liao, W. (2020). Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiology and Biochemistry, 147, 161-171.
  43. Xiong, J., An, L., Lu, H. & Zhu, C. (2009). Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 230(4), 755–765.
  44. Zhao, H., Jin, Q., Wang, Y. & Chu, L. (2016). Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regulation, 78(2), 243-251.