The study of large scale Phalaenopsis amabilis cv. Detroit plantlets production ‎through in vitro culture of the vegetative organs

Document Type : Full Paper

Authors

1 Ph. D. Candidate, Department of Horticultural Sciences, Faculty of Agricultural ‎Sciences, University of Guilan, Rasht, Iran

2 Assistant Professor, Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of ‎Guilan, Rasht, Iran

3 Associate Professor, Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

Orchids are one of the most popular plants in the world. Because of its hard propagation as most important problem, micropropagation technique has been employed recently. In this study, commercial micropropagation of orchid Phalaenopsis cut flower “Detroit” was done by vegetative tissue. First, nodal explants of Phalaenopsis amabilis cv. Detroit flower stalks cultured on Murashige and Skoog (MS) medium supplemented with different concentration of NAA and BAP for direct regeneration and the obtained planlets were cultured on ½ MS medium supplemented with different combination of NAA, IAA and activated charcoal for rooting. The sterile leaves of plantlets were cultured on ½ MS medium containing NAA, BAP and TDZ for evaluation of regeneration and direct production of somatic embryos. Results showed that effective concentration for plantlet regeneration obtained in MS medium containing 1 mg/l NAA and 4 mg/l BAP. The highest number of root produced in 2 mg/l NAA. The highest number of protocorms obtained at 3 mg/l TDZ. The plants survived rates from nodal flower stalk explants was 84.93%. At the end, the highest plantlets acclimatization (90.20 %) was in medium containing cocopeat and activated charcoal (1: 1).

Keywords


  1. Balilashaki, K., Naderi, R., Kalantari, S. & Vahedi, M. (2014). Efficient in vitro culture protocols for propagating Phalaenopsis ‘Cool Breeze’. Plant Tissue Culture & Biotechnology, 24,191‐203.
  2. Chen, Y., & Piluek, C. (1995). Effects of thidiazuron and N6-benzylaminopurine on shoot regeneration of Plant Growth Regulation, 16(1), 99-101.
  3. Chen, J., & Chang, W.C. (2006). Direct Somatic embryogenensis and plant regeneration from leaf explants Phalaenopsis. Bioplant, 50, 169-173.
  4. Chen, T. Y., Chen, J. T. & Chang, W. C. (2002). Multiple shoot formation and plant regeneration from stem nodal explants of Paphiopedilum In Vitro Cellular & Developmental Biology-Plant, 38(6), 595-597.
  5. Chugh, S., Guha, S. & Rao, I. U. (2009). Micropropagation of orchids: a review on the potential of different explants. Scientia Horticulturae, 122(4), 507-520.
  6. Devi, H. S., Devi, S. I. & Singh, T. D. (2013). High frequency plant regeneration system of Aerides odorata through foliar and shoot tip culture. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 169.
  7. Ghahremani, A., Ganji, M., Tatari, M. &  Khosroyar, M. (2020). Effect of type and concentration of growth regulators on the proliferation and ‎marcotting of Withania coagulans medical plant. Iranian Journal of Horticultural Science, 51 (2): 287-294 (in Farsi).
  8. Gow, W. P., Chen, J. T. & Chang, W. C. (2008). Influence of growth regulators on direct embryo formation from leaf explants of Phalaenopsis Acta Physiologiae Plantarum, 30(4), 507-512.
  9. Hong, P. I., Chen, J. T. & Chang, W. C. (2010). Shoot development and plant regeneration from protocorm-like bodies of Zygopetalum mackayi. In Vitro Cellular & Developmental Biology-Plant, 46(3), 306-311.
  10. Hossain, M. M., Sharma, M. & Pathak, P. (2009). Cost effective protocol for in vitro mass propagation of Cymbidium aloifolium (L.) Sw.–a medicinally important orchid. Engineering in Life Sciences, 9(6), 444-453.
  11. Jafari, M., Daneshvar, M. & Lotfi-Jalalabadi, A. (2020). Direct organogenesis of passion flower (Passiflora caerulea) via leaf and petiole explants. Iranian Journal of Horticultural Science, 49 (2): 375-382 (in Farsi).
  12. Ket, N. V., Hahn, E. J., Park, S. Y., Chakrabarty, D. & Paek, K. Y. (2004). Micropropagation of an endangered orchid Anoectochilus formosanus. Biologia Plantarum, 48(3), 339-344.
  13. Kong, Q., Yuan, S. Y. & Végvári, G. Y. (2007). Micropropagation of an orchid Dendrobium strongylanthum f. International Journal of Horticultural Science, 13(1), 61-64.
  14. Košir, P., Škof, S. & Luthar, Z. (2004). Direct shoot regeneration from nodes of Phalaenopsis Acta agriculturae Slovenica, 83(2), 233-242.
  15. Long, B., Niemiera, A. X., Cheng, Z. Y. & Long, C. L. (2010). In vitro propagation of four threatened Paphiopedilum species (Orchidaceae). Plant Cell, Tissue and Organ Culture, 101(2), 151-162.
  16. McKey, D., Elias, M., Pujol, B. & Duputié, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 186(2), 318-332.
  17. Mok, M. C., Mok, D. W. S., Armstrong, D. J., Shudo, K., Isogai, Y. & Okamoto, T. (1982). Cytokinin activity of N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry, 21(7), 1509-1511.
  18. Niknejad, A., Kadir, M.A. & Kadzimin, S.B. (2013). In vitro plant regeneration from protocorms‐like bodies (PLBs) and callus of Phalaenopsis gigantea (Epidendroideae: Orchidaceae). African Journal of Biotechnology, 10(56), 11808‐11816.
  19. Paudel, M. R. & Pant, B. (2012). In vitro plant regeneration of Esmeralda clarkei f. via protocorm explant. African Journal of Biotechnology, 11(54), 11704-11708.
  20. Reed, B. M. (2001). Implementing cryogenic storage of clonally propagated plants. Cryo-Letters, 22(2), 97-104.
  21. Saya, R. A., Mankessi, F., Toto, M., Marien, J. N. & Monteuuis, O. (2008). Advances in mass clonal propagation of Eucalyptus urophylla× grandis in Congo. Bois & Forets des Tropiques, 297, 15-25.
  22. Seeni, S. & Latha, P. G. (1992). Foliar regeneration of the endangered red vanda, Renanthera imschootiana Rolfe (Orchidaceae). Plant Cell, Tissue and Organ Culture, 29(3), 167-172.
  23. Subramaniam, S., Balasubramaniam, V., Poobathy, R., Sreenivasan, S. & Rathinam, X. (2009). Chemotaxis movement and attachment of Agrobacterium tumefaciens to Phalaenopsis violacea orchid tissues: An assessment of early factors influencing the efficiency of gene transfer. Tropical Life Sciences Research, 20(1), 73-81.
  24. Tan, B. C., Chin, C. F. & Alderson, P. (2011). Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Plant Cell, Tissue and Organ Culture, 105(3), 457-463.
  25. Tanaka, M. & Sakanishi, Y. (1980). Clonal propagation of Phalaenopsis through tissue culture. In Proceeding. 9th World Orchid Conference, Bangkok, 21 May 1987, pp. 215-221.
  26. Thomas, S. H. (1992). Demand overpaces production of the optimum orchid. Greenhouse Growers, 11, 56-59.
  27. Tokuhara, K. & Mii, M. (1993). Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Reports, 13(1), 7-11.
  28. Tokuhara, K. & Mii, M. (2003). Highly-efficient somatic embryogenesis from cell suspension cultures of Phalaenopsis orchids by adjusting carbohydrate sources. In Vitro Cellular & Developmental Biology-Plant, 39(6), 635-639.
  29. Young, P. S., Murthy, H. N. & Yoeup, P. K. (2000). Mass multiplication of protocorm-like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell, Tissue and Organ Culture, 63(1), 67-72.