The effect of water deficiency stress and citrulline on essential oil content, ‎photosynthetic pigments and chlorophyll fluorescence of hyssop (Hyssopus ‎officinalis L.) in different harvests

Document Type : Full Paper


1 M. Sc. Student,, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran‎

2 Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran‎

3 Associate Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran‎

4 Assistant Professor, Faculty of Agriculture, University of Maragheh, Maragheh, Iran‎


In the present study, effects of exogenous citrulline (control, 1 mM and 2 mM) and water availability (100% WA, 50% WA and 25% WA) on growth indices, health of photosynthetic system, and essential oils quantity of hyssop were examined in two successive harvests (summer and autumn, 2019). Extraction of essential oils and determination of its content was performed by using clevenger-type apparatus in full blossoming stage. Analysis of variance showed that essential oil content, fresh weight, leaf area, plant height, total chlorophylls, and Fv/Fm indicator were decreased under severe water deficit stress (25% WA). Although citrulline doesn’t have a significant effect on essential oil content, citrulline at 2 mM could increase essential oil content under severe water deficit stress by about 15% and 30% in the first and second harvest, respectively. According to mean comparison, citrulline employment at 2 mM could significantly improve total chlorophyll content, anthocyanines content, relative water content and Fv/Fm indicator under severe water deficit stress. Overall, results of experiment corroborate that citrulline in low concentrations can economically collaborate as a metabolic agent in improving the essential oil content and growth parameters of hyssop.


  1. Ahmadi, H., Sarcheshmeh, M. A. A., Morshedloo, M. R., & Shokrpour, M. (2020). Effects of exogenous application of citrulline on prolonged water stress damages in hyssop (Hyssopus officinalis): Antioxidant activity, biochemical indices, and essential oils profile. Food Chemistry, 333, 127433.
  2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  3. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts in Beta vulgarisPlant Physiology, 24(1), 1.
  4. Askari, E. & Ehsanzadeh, P. (2015). Osmoregulation-mediated differential responses of field-grown fennel genotypes to drought. Industrial Crops and Products76, 494-508.
  5. Babalar, M., Askari, M.A., Naderi, R., Kafi, M., Yazdani, H., Ahmadi, A., Zolfaghari, M., Salehi, F., Goodarzi, M.A., Panahi, H., Shahlay, G. & Memartadbiri, M. (2009). Zeoponics and phosphorous nutrition from Iranian apatite. Final Report Research and Applied Project of Presidency. 50 pp.
  6. Baghbani-Arani, A., Modarres-Sanavy, S. A. M., Mashhadi-Akbar-Boojar, M. & Mokhtassi-Bidgoli, A. (2017). Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Industrial Crops and Products109, 346-357.
  7. Baghizadeh, A., Mahleghah, G., Mahmood, H. M. R., & Hossein, M. (2009). Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in okra (Hibiscus esculentus). Research Journal of Biological Science, 4, 380-387.
  8. Biglouie, M.H., Assimi, M.H. & Akbarzadeh, A. (2010). Effect of water stress at different stages on quantity and quality traits of virginia (flue cured) tobacco type. Plant Soil Environment, 56 (2), 67-75.
  9. Darvizheh, H., Zahedi, M., Abbaszadeh, B., & Razmjoo, J. (2019). Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Scientia Horticulturae247, 390-399.
  10. Daşgan, H.Y., Kuşvuran, S. & Abak, K. (2009). The relationship between citrulline accumulation and salt tolerance during the vegetative growth of melon (Cucumis melo ), Plant Environment Science, 55 (2), 51–57.
  11. Dutta, T., Neelapu, N. R., Wani, S. H. & Challa, S. (2018). Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In: H. Wani (Ed.), Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants.(pp. 221-254). Academic Press.
  12. Ghassemi, S., Ghassemi-Golezani, K., & Salmasi, S. Z. (2019). Changes in antioxidant enzymes activities and physiological traits of ajowan in response to water stress and hormonal application. Scientia Horticulturae246, 957-964.
  13. Gupta, D. K., Palma, J. M. & Corpas, F. J. (2018). Antioxidants and antioxidant enzymes in higher plants. Springer International Publishing.
  14. Hildebrandt, T. M., Nesi, A. N., Araújo, W. L. & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant8(11), 1563-1579.
  15. Hosseinzadeh, S. R., Amiri, H. & Ismaili, A. (2018). Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum cv. Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture17(11), 2426-2437.
  16. Iqbal, N., Nazar, R. & Khan, N. A. (2015). Osmolytes and plants acclimation to changing environment: Emerging omics technologies. Springer.
  17. Jaleel, C. A., Manivannan, P., Lakshmanan, G. M. A., Gomathinayagam, M. & Panneerselvam, R. (2008). Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerfaces61(2), 298-303.
  18. Judžentienė, A. (2016). Hyssop (Hyssopus officinalis) Oils. In: V. R. Preedy (Ed.), Essential oils in food preservation, flavor and safety. (pp. 470-480). Academic Press.
  19. Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A. & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum38(4), 102.
  20. Khazaie, H. R., Nadjafi, F. & Bannayan, M. (2008). Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Industrial Crops and Products27(3), 315-321.
  21. Khorasaninejad, S., Alizadeh Ahmadabadi, A., & Hemmati, K. (2018). The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea under water deficit stress. Scientia Horticulturae239, 314-323.
  22. Kulak, M., Ozkan, A., & Bindak, R. (2019). A bibliometric analysis of the essential oil-bearing plants exposed to the water stress: How long way we have come and how much further? Scientia Horticulturae246, 418-436.
  23. Kusvuran, S., Dasgan, H. Y. & Abak, K. (2013). Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. The Scientific World Journal, 2013, 1-8.
  24. Madani, B., Mirshekari, A. & Imahori, Y. (2019). Physiological responses to stress. In: M. Yahia & A. Carrillo-Lopez (Eds). Postharvest physiology and biochemistry of fruits and vegetables. (pp. 405-422). Woodhead Publishing.
  25. Mohammadi, H., Amirikia, F., Ghorbanpour, M., Fatehi, F. & Hashempour, H. (2019). Salicylic acid induced changes in physiological traits and essential oil constituents in different ecotypes of Thymus kotschyanus and Thymus vulgaris under well-watered and water stress conditions. Industrial Crops and Products129, 561-574.
  26. Moosavi, S. G. R., Ramazani, S. H. R., Hemayati, S. S. & Gholizade, H. (2017). Effect of drought stress on root yield and some morpho-physiological traits in different genotypes of sugar beet (Beta vulgaris L.). Journal of Crop Science and Biotechnology, 20 (3), 167-174.
  27. Polish pharmacopoeia, VII. (2006). PTFarm. Warsaw, Poland.
  28. Sharifi, P. (2017). The Effect of plant growth promoting rhizobacteria (PGPR), salicylic acid and drought stress on growth indices, the chlorophyll and essential oil of hyssop (Hyssopus officinalis). Biosciences Biotechnology Research Asia,14 (3). 1033-1042.
  29. Sullivan, C.Y. & Ross, W.M., (1979). Selecting for drought and heat resistance in grain sorghum In: H. Mussell & RC Staples (Ed), Stress Physiology in Crop Plant. (pp.263–281.). John Wiley & Sons, New York.
  30. Venditti, A., Bianco, A., Frezza, C., Conti, F., Bini, L.M., Giuliani, C., Bramucci, M., Quassinti, L., Damiano, S., Lupidi, G. & Beghelli, D. (2015). Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis aristatus (Godr.) Nyman from central Italy. Industrial Crops and Products, 77, 353-363.
  31. Wagner, G.J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars free amino acids, and anthocyanins in protoplast. Plant Physiology, 64, 88-93.
  32. Xu, Ch. & Leskovar, D.I. (2015). Effects of nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientica Horticulturea, 183, 39–47.
  33. Yadav, R.K., Sangwan, R.S., Sabir, F., Srivastava, A.K. & Sangwan, N.S. (2014). Effect of prolonged water stress on secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua Plant Physiology and Biochemisrtey, 74, 70-83.
  34. Yokota, A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C. & Akashi, K. (2002). Citrulline and DRIP‐1 protein (ArgE homologue) in drought tolerance of wild watermelon. Annals of Botany, 89 (7), 825-832
  35. Zali, A. G., & Ehsanzadeh, P. (2018). Exogenous proline improves osmoregulation, physiological functions, essential oil, and seed yield of fennel. Industrial Crops and Products, 111, 133-140.