Screening some common onion cultivars for resistance to fusarium basal rot ‎‎(Fusarium oxyosporum f. sp cepae) and assaying expression levels of the COI1 and ‎ERF1 genes in sensitive and tolerant cultivars

Document Type : Full Paper


1 Ph. D. Candidate, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 Associate Professor, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

3 Professor, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran


Onion is a major horticultural crop, which is regularly affected by substantial yield loss due to fusarium basal rot. In this research, the pathogenicity tests of eight Fusarium isolates were performed on onion bulbs of the Early Grano cultivar in vitro. Four isolates, namely HR1, HR97, HR42, and HR21, showed the highest degree of pathogenicity. The host ranges of the four pathogenic isolates were determined in the greenhouse condition. The HR1, HR42, and HR21 were isolated from the genus Allium. The TEF regions were sequenced on these isolates and the diagnosis of Fusarium oxyosporum f. sp cepae was approved based on a comparison with the sequence data of the GenBank. The screening for fusarium basal rot was performed on some Iranian onion cultivars together with the two foreign cultivars, namely the Early Grano and Sweet Spanish. The results indicated that the Ghermeze-Azarshahr cultivar and Sefide-Kashan cultivar were, respectively, sensitive and tolerant to this disease. The expressions of the COI1 transcript (Coronatine-Insensitive 1) and the ERF1 transcript (Ethylene Response Factor 1) were measured in the sensitive and tolerant cultivars after inoculation with the Fusarium isolates. The results showed no difference in the COI1 expression between the sensitive and tolerant cultivars. The ERF1 expression was higher in the Ghermeze-Azarshahr cultivar 24 hours after inoculation; whereas, an ERF1 expression decline was observed in the Sefide-Kashan cultivar. According to the results, it seems that the ERF1 plays a key role in resistance mechanisms of onions infected with fusarium basal rot disease.


  1. Abbasi, K., Zafari, D., Wick, R. & Hamedan, I. (2017). Evaluation of chitinase enzyme in fungal isolates obtained from golden potato cyst nematode (Globodera rostochiensis). Žemdirbystė (Agriculture), 104(2), 179-184.
  2. Anderson, J. P., Lichtenzveig, J., Gleason, C., Oliver, R. P. & Singh, K. B. (2010). The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiology, 154(2), 861-873.
  3. Baghban, S. S., Kashi, A., Khalighi, A., Pasban, E. B. & Alizadeh, O. P. (2011). Inspection of some morphological and physiological traits in twelve Iranian onion population (Allium cepa). Journal of Plant Production, 18 (1), 89-103. (In Farsi).
  • Bagherabadi, S., Zafari, D., Ghobadi Anvar, F. & Damm, U. (2018). Colletotrichum gloeosporioides sensu stricto, the causal agent of a leaf spot disease of Schefflera arboricola in Iran. Mycologia Iranica, 5(1), 29-34.
  1. Bazl, S., Dashti, F. & Delshad, M. (2017). Effects of different levels of sulfur and selenium on some morphological and antioxidant properties of onion (Allium cepa) cv. Germez Azarshahr. Iranian Journal of Horticultural Science, 48(3), 623-633. (In Farsi).
  2. Berrocal‐Lobo, M., Molina, A. & Solano, R. (2002). Constitutive expression of Ethylene‐Response‐Factor1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32.
  3. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., López-Vidriero, I., Lozano,M., Ponce, M.R. & Micol, J.L. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448 (7154), 666-671.
  4. Cramer, C.S. (2000). Breeding and genetics of fusarium basal rot resistance in onion. Euphytica, 115(3), 159-166.
  5. Dissanayake, M.L.M.C., Kashima, R., Tanaka, S. & Ito, S.I. (2009). Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology, 75(1), 37-45.
  6. Epple, P., Apel, K. & Bohlmann, H. (1997). Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. The Plant Cell, 9(4), 509-520.
  7. El-Kazzaz, M.K., Sommer, N.F. & Kader, A.A. (1983). Ethylene effects on in vitro and in vivo growth of certain postharvest fruit-infecting fungi. Phytopathology, 73(7), 998-1001.
  8. Ghaemizadeh, F., Dashti, F. & Shafeinia, A. (2018). Expression analysis of gaLFY and AsFT during reproductive development in different organs of some Iranian Garlic (Allium sativum) Clones. Iranian Journal of Horticultural Science, 49 (1), 269-278. (In Farsi).
  9. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205-227.
  10. Galván, G.A., Koning-Boucoiran, C.F., Koopman, W.J., Burger-Meijer, K., González, P.H., Waalwijk, C., Kik, & Scholten, O.E. (2008). Genetic variation among Fusarium isolates from onion, and resistance to fusarium basal rot in related Allium species. European Journal of Plant Pathology, 121(4), 499-512.
  11. Hammond-Kosack, K. E. & Parker, J. E. (2003). Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 14(2), 177-193.
  12. Hajianfar, R. & Rostam Foroudi, B. (2005). Evaluation of resistance of Iranian onion masses to Fusarium root rot disease in greenhouse conditions. In: Proceedings of 4th Congress of Horticultural Sciences 6-7 Nov., Ferdowsi University of Mashhad, Khorasan Razavi province, Iran. (In Farsi).
  13. Holz, O.S. (1969). Resistance of onion selections to Fusarium oxysporum sp. cepae. Phytophylactica, 1(2), 153-156.
  14. Kunkel, B. N. & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325-331.
  15. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J. & Solano, R. (2003). Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 15(1), 165-178.
  16. Lyons, R., Rusu, A., Stiller, J., Powell, J., Manners, J. M. & Kazan, K. (2015). Investigating the association between flowering time and defense in the Arabidopsis Thaliana-Fusarium oxysporum PloS one, 10(6), 1-24.
  17. Mao, Y. B., Liu, Y. Q., Chen, D. Y., Chen, F. Y., Fang, X., Hong, G. J., Wang, J., Wang, J. W. & Chen, X.Y. (2017). Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nature Communications, 8(1), 1-13.
  18. McGrath, K. C., Dombrecht, B., Manners, J. M., Schenk, P. M., Edgar, C. I., Maclean, D. J., Scheible, R., Udvardi, M. K. & Kazan, K. (2005). Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology, 139(2), 949-959.
  19. Moghadam, A. A., Ebrahimie, E., Taghavi, S. M., Niazi, A., Babgohari, M. Z., Deihimi, T., Djavaheri, & Ramezani, A. (2013). How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F 1 F 0-ATP synthase complex. Molecular Biotechnology, 54(3), 756-769.
  20. Nasrasfahani, M. & Hosseini Kopai, M. (2016). Physical components of resistance in onion genotypes resistant and susceptible to root rot and Fusarium oxysporum sp. cepae. Seed and Plant Journal, 31(3), 547-564. (In Farsi).
  21. Özer, N., Köycü, N. D., Chilosi, G. & Magro, P. (2004). Resistance to fusarium basal rot of onion in greenhouse and field and associated expression of antifungal compounds. Phytoparasitica, 32(4), 388-394.
  22. Onaga, G. & Wydra, K. (2016). Advances in plant tolerance to abiotic stresses. Plant Genomics, 10, 229-272.
  23. Peyghami, E., Messiah, S., Valizadeh, M. & Samadi, A. (2001). Evaluation of resistance of different onion cultivars (Allium cepa) to root rot and onion rot (Fusarium spp). Agriculture Knowledge, 11(3), 101-111. (In Farsi)
  24. Pfaffl, M.W., Horgan, G.W. & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36-46.
  25. Pieterse, C. M., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S. C. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489-521.
  26. Rout, E., Tripathy, P., Nanda, S., Nayak, S. & Joshi, R. K. (2016). Evaluation of cultivated and wild allium accessions for resistance to Fusarium oxysporum sp. cepae. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86(3), 643-649.
  27. Saxena, A. & Cramer, C. S. (2009). Screening of onion seedlings for resistance against New Mexico isolates of Fusarium oxysporum sp. cepae. Journal of Plant Pathology, 91(1), 199-202.
  28. Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., Kobayashi, Y., Hsu, F., Sharon, M., Browse, J. & He, S. Y. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 468(7322), 400-405.
  29. Shigyo, M., Khar, A. & Abdelrahman, M. (Eds.). (2018). The Allium genomes (1th ed.). Cham: Springer.
  30. Sugano, S., Sugimoto, T., Takatsuji, H. & Jiang, C. J. (2013). Induction of resistance to Phytophthora sojae in soyabean (Glycine max) by salicylic acid and ethylene. Plant Pathology, 62(5), 1048-1056.
  31. Taylor, A., Vagany, V., Barbara, D. J., Thomas, B., Pink, D.A.C., Jones, J. E. & Clarkson, J. P. (2013). Identification of differential resistance to six Fusarium oxysporum sp. cepae isolates in commercial onion cultivars through the development of a rapid seedling assay. Plant Pathology, 62(1), 103-111.
  32. Thaler, J.S., Owen, B. & Higgins, V.J. (2004). The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology, 135(1), 530-538.
  33. Toit, L. D., Inglis, D. A. & Pelter, G. Q. (2003). Fusarium proliferatum pathogenic on onion bulbs in Washington. Plant Disease, 87(6), 750 -750.
  34. Zanghue, Z., Hasandokht, M. R. & Kashi, A. (2015). Effect of spermidine on in vitro gynogenesis of six onion accessions from Khorasan province. Iranian Journal of Horticultural Science, 46(2), 225-231. (In Farsi).
  35. Zhang, W., Corwin, J.A., Copeland, D., Feusier, J., Eshbaugh, R., Chen, F., Atwell, & Kliebenstein, D.J. (2017). Plastic transcriptomes stabilize immunity to pathogen diversity: the jasmonic acid and salicylic acid networks within the Arabidopsis/Botrytis pathosystem. The Plant Cell, 29(11), 2727-2752.