Assessment of antioxidant activity, phenolic components, photosynthesis pigments ‎and fruit quantitative traits in four blackberry (Rubus sanctus) accessions at ‎different fruit maturity stages

Document Type : Full Paper


1 Ph. D. Candidate, School of Agriculture, Shiraz University, Shiraz, Iran

2 Professor, School of Agriculture, Shiraz University, Shiraz, Iran

3 Associate Professor, School of Agriculture, Shiraz University, Shiraz, Iran


This study was conducted in order to evaluate the variation of blackberry accession of Iran in terms of antioxidant activity, phenolic components, fruit quantitative traits and photosynthesis pigments. For this regards, four accessions of wild blackberry including Babolsar, Naharkhoran, BandarGaz and NamakAbroud belongs to Rubus sanctus species, which collected from the northern area of Iran and has been kept in Blackberry Collection of Horticulture Department of Shiraz University were selected and subjected to factorial design based on randomized complete block designs with four replications in two consecutive years. Then, the fruit sanmples were collected in three fruit maturity stages (Black, Red and Green). The results indicated significant differences between accessions in terms of half maximal inhibitory concentration (IC50) (range, 46.25-65.50 %), total phenolic content (TPC) (range, 224.67-350.53 mg/100 g DW), flavonoid (range, 531.71-812.37 mg/100 g DW), flavanone (range, 18.47-75.55 mg/100 g DW), anthocyanin (range, 92.23-281.57 mg/100 g FW) along with other traits. Furthermore, the highest quantity of abtioxidant and phenolic compounds were observed in complete fruit maturity stages (Black) compared to other maturity stages. There was a positive and significant association between antioxidant activity and phenolic compounds. Babolsar genotype with highest quantity of phenol (350.53 mg/100 g DW), anthocyanin (281.57 mg/100 g FW), flavanone (75.55 mg/100 g DW), flavonoids (812.37 mg/100 g DW) and lowest amount of IC50 (46.25 %) identified as the best genotype in terms of nutritional value.


  1. Acosta-Montoya, Ó., Vaillant, F., Cozzano, S., Mertz, C., Pérez, A.M. & Castro, M.V. (2010). Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus) during three edible maturity stages. Food Chemistry119(4), 1497-1501.
  2. Ahmadi, K., Gholizadeh, H., Ebadzadeh, H. R., Hosseinpour, R., Hatami, F., Abdshah, H., Rezaei, M. M., Kazemifard, R. & Fazli Estabragh, M. (2015). Agricultural Statistics in 2013. Center for Information and Communication Technology, Department of Planning and Economic, Ministry of Agriculture, 147. (in Farsi)
  3. Akin, M., Eyduran, S.P., Ercisli, S., Kapchina-Toteva, V. & Eyduran, E. (2016). Phytochemical profiles of wild blackberries, black and white mulberries from southern Bulgaria. Biotechnology & Biotechnological Equipment, 30(5), 899-906.
  4. Alice, L. A., Dodson, T. M. & Sutherland, B. L. (2008). Diversity and relationship of butanese rubus,Acta Horticulturae, 777, 63-70.
  5. Ao, C., Li, A., Elzaawely, A.A., Xuan, T.D. & Tawata, S. (2008). Evaluation of antioxidant and antibacterial activities of Ficus microcarpa extract. Food Control, 19(10), 940-948.
  6. Arts, I.C., van de Putte, B. & Hollman, P.C. (2000). Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. Journal of Agricultural and Food Chemistry, 48(5), 1746-1751.
  7. Atala, E., Vásquez, L., Speisky, H., Lissi, E. & López-Alarcón, C. (2009). Ascorbic acid contribution to ORAC values in berry extracts: An evaluation by the ORAC-pyrogallol red methodology. Food Chemistry113(1), 331-335.
  8. Bilyk, A. & Sapers, G.M. (1986). Varietal differences in the quercetin, kaempferol, and myricetin contents of highbush blueberry, cranberry, and thornless blackberry fruits. Journal of Agricultural and Food Chemistry, 34(4), 585-588.
  9. Brennan, R. & Graham, J. (2009). Improving fruit quality in Rubus and Ribes through breeding. Functional Plant Science and Biotechnology, 3(1), 22-29.
  10. Caproni, C. M., Curi, P. N., Moura, P. H. A., Pio, R., Gonçalves, E. D. & Pasqual, M. (2016). Blackberry and redberry production in crop and intercrop in Pouso Alegre, southern Minas Gerais, Brazil. Ciência Rural46(10), 1723-1728.
  11. Cho, B.O., Lee, C.W., So, Y., Jin, C.H., Yook, H.S., Byun, M.W., Jeong, Y.W., Park, J.C. & Jeong, I.Y. (2014). Protective effect of radiation-induced new blackberry mutant γ-B201 on H2O2-induced oxidative damage in HepG2 cells. Korean Journal of Food Science and Technology, 46(3), 384-389.
  12. Cho, M.J., Howard, L.R., Prior, R.L. & Clark, J.R. (2004). Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high‐performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84(13), 1771-1782.
  13. Clark, J.R., Stafne, E.T., Hall, H. & Finn, C.E. (2007). Blackberry breeding and genetics. Plant Breeding Reviews, 29, 19-144
  14. Clark, J. R. & Finn, C. E. (2011). Blackberry breeding and genetics. Fruit, vegetable and cerealscience and biotechnology. Global Science Books, 5(1), 27-43.
  15. Clark, J.R., Howard, L. & Talcott, S. (2001). July. Antioxidant activity of blackberry genotypes. In VIII International Rubus and Ribes Symposium, 585, 475-480.
  16. Cuevas-Rodriguez, E.O., Yousef, G.G., Garcia-Saucedo, P.A., Lopez-Medina, J., Paredes-López, O. & Lila, M.A. (2010). Characterization of anthocyanins and proanthocyanidins in wild and domesticated Mexican blackberries (Rubus). Journal of Agricultural and Food Chemistry, 58(12), 7458-7464.
  17. Curi, P.N., Pio, R., Moura, P.H.A., Lima, L.C.O. & Valle, M.H.R. (2014). Qualidade de framboesas sem cobertura ou cobertas sobre o dossel e em diferentes espaçamentos. Revista Brasileira de Fruticultura, 36(1), 199-205.
  18. Curi, P. N., Pio, R., Moura, P. H. A., Tadeu, M. H., Nogueira, P. V. & Pasqual, M. (2015). Produção de amora-preta e amora-vermelha em Lavras-MG. Ciência Rural45(8), 1368-1374.
  19. Dai, J., Patel, J.D. & Mumper, R.J. (2007). Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. Journal of Medicinal Food, 10(2), 258-265.
  20. de Ancos, B., González, E.M. & Cano, M.P. (2000). Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. Journal of Agricultural and Food Chemistry, 48(10), 4565-4570.
  21. Dossett, M.P. & Finn, C.E. (2008). Variation and inheritance of vegetative characteristics andreproductive traits in black raspberry.Acta Horticulturae, 777, 147-152.
  22. Esmaeili, S. Z., Dianati, M., Cherati, A. & Moradi, H. (2012). Evaluation of some morphologic andbiochemical characters of wild black berry in mountain foot and plain. In: Proceedings of National Congress of Medicinal Plants, 20-21 Nov., Islamic Azad University, Amol, Iran, pp. 1-5. (in Farsi).
  23. Eyduran, S.P., Ercisli, S. & Akin, M. (2015). Organic acids, sugars, vitamin C, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba) and black (Morus nigra L.) mulberry genotypes. Journal of Applied Botany and Food Quality, 88, 134-138.
  24. (2014). FAOSTAT database collections. Food and Agriculture Organization of the United Nations. Rome. Access date: 2013-04-22. URL: http://faostat.fao.or.
  25. Finn, C. E. (2008). Blackberries. In: J. F. Hancock (Ed), Temperate fruit crop breeding. (pp. 83-114.) Springer Science.
  26. Finn, C. E. & Clark, J. R. (2012). Blackberry. In Fruit breeding(pp. 151-190). Springer, Boston, MA.
  27. Fosket, D. E. (1994). Plant growth and development: a molecular approach. Academic Press Inc.
  28. García, G. (2012). Elaboración de un paquete tecnológico para productores, en manejo, cosecha y poscosecha de mora (Rubus glaucus Benth.) aplicando ingeniería de calidad y determinación de las características nutraceúticas de la fruta en precosecha, en el municipio de Silvania Cundinamarca. Departamento de Ingeniería Agrícola, Universidad Nacional de Colombia, Bogota, from
  29. Garcı́a-Alonso, M., de Pascual-Teresa, S., Santos-Buelga, C. & Rivas-Gonzalo, J.C. (2004). Evaluation of the antioxidant properties of fruits. Food Chemistry, 84(1), 13-18.
  30. Giongo, L., Palmieri, L., Grassi, A., Grisenti, M., Poncetta, P. & Velasco, R. (2012). Phenotypingand genotyping of rubus germplasm for the improvement of quality traits in raspberry breedingActa Horticultureae, 946, 77-81.
  31. Giusti, M.M. & Wrolstad, R.E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, (1), F1-2.
  32. Gross, J. (2012). Pigments in vegetables: chlorophylls and carotenoids. Springer Science & Business Media.
  33. Guedes, M. N. S., Abreu, C. M. P. D., Maro, L. A. C., Pio, R., Abreu, J. R. D. & Oliveira, J. O. D. (2013). Chemical characterization and mineral levels in the fruits of blackberry cultivars grown in a tropical climate at an elevation. Acta Scientiarum Agronomy35(2), 191-196.
  34. Guedes, M. N. S., Pio, R., Maro, L. A. C., Lage, F. F., Abreu, C. M. P. D. & Saczk, A. A. (2017). Antioxidant activity and total phenol content of blackberries cultivated in a highland tropical climate. Acta Scientiarum Agronomy39(1), 43-48.
  35. Guerrero, J., Ciampi, L., Castilla, A., Medel, F., Schalchli, H., Hormazabal, E., ... & Alberdi, M. (2010). Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chilean Journal of Agricultural Research70(4), 537-544.
  36. Hadadinejad, M. (2014). Establishment of research collection of blackberries in east of mazandaran.
    In: Proceedings of 3rd National Congress of Organic and Customary Agriculture, 20-21 Aug.,
    University of Mohaghegh Ardabili, Ardabil, Iran, pp. 1-4. (in Farsi)
  37. Haddadinejad, M., Abdi, N. & Moradi, H. (2017). Evaluation of morphological diversity in thorn less blackberry in Mazandaran. Iranian Journal of Horticultural Science, 49 (1), 281-292. (in Farsi)
  38. Heinonen, I.M., Meyer, A.S. & Frankel, E.N. (1998). Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry, 46(10), 4107-4112.
  39. Hiscox, J.D. & Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334.
  40. Jafari, Z. & Gharaghani, A. (2013). Study of growth and yield of some blackberry’s species from throughout Iran in Bajgah. M.Sc. Thesis. Department of Horticulture, Shiraz University, Iran.
  41. Johansson, E., Hussain, A., Kuktaite, R., Andersson, S. & Olsson, M. (2014). Contribution of organically grown crops to human health. International Journal of Environmental Research and Public Health, 11(4), 3870-3893.
  42. Kähkönen, M.P., Hopia, A.I. & Heinonen, M. (2001). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry49(8), 4076-4082.
  43. Kähkönen, M.P., Hopia, A.I. & Heinonen, M. (2001). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry, 49(8), 4076-4082.
  44. Kanofsky, J.R. & Sima, P.D. (2007). Activity of a cationic carotenoid derivative in a mouse model of protoporphyria. Journal of Photochemistry and Photobiology B: Biology, 87(2), 124-129.
  45. Kaume, L., Howard, L.R. & Devareddy, L. (2011). The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716-5727.
  46. Khatamsaz, M. (1992). Flora of Iran (family Rosaceae). Res. Inst. For. Rangelands Press, 6, 274-315.
  47. Macheix, J.J., Fleuriet, A. & Billot, J., 1990. Phenolic compounds in fruit processing. Fruit Phenolics, 1, 295-358.
  48. Maro, L.A.C., Pio, R., Guedes, M.N.S., Abreu, C.M.P.D. & Moura, P.H.A. (2014). Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Scientiarum Agronomy36(3), 323-328.
  49. Maro, L. A. C., Pio, R., Guedes, M. N. S., de Abreu, C. M. P. & Curi, P. N. (2013). Bioactive compounds, antioxidant activity and mineral composition of fruits of raspberry cultivars grown in subtropical areas in Brazil. Fruits68(3), 209-217.
  50. Mayne, S.T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. The FASEB Journal, 10(7), 690-701.
  51. Menichini, F., Tundis, R., Bonesi, M., Loizzo, M.R., Conforti, F., Statti, G., De Cindio, B., Houghton, P.J. & Menichini, F. (2009). The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense cv Habanero. Food Chemistry, 114(2), 553-560.
  52. Momeni, S. H. A. & Gharaghani, A. (2012). Study the growth chractristics and fruit quantitative and qualitative traits of some blackberries from north and south of Iran. M.Sc. Thesis. Department of Horticulture, Shiraz Univeristy, Iran.
  53. Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B. & Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry, 50(3), 519-525.
  54. Oliver, J. & Palou, A. (2000). Chromatographic determination of carotenoids in foods. Journal of Chromatography, 881(1-2), 543-555.
  55. Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A. & Diamantidis, G.R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783.
  56. Perkins-Veazie, P., Clark, J.R., Huber, D.J. & Baldwin, E.A. (2000). Ripening physiology in 'Navaho' thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. Journal of the American Society for Horticultural Science, 125(3), 357-363.
  57. Prior, R.L., Cao, G., Martin, A., Sofic, E., McEwen, J., O'Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G. & Mainland, C.M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium Journal of Agricultural and Food Chemistry, 46(7), 2686-2693.
  58. Reyes‐Carmona, J., Yousef, G.G., Martínez‐Peniche, R.A. & Lila, M.A. (2005). Antioxidant capacity of fruit extracts of blackberry (Rubus) produced in different climatic regions. Journal of Food Science, 70(7), s497-s503.
  59. Rubinskiene, M., Viskelis, P., Jasutiene, I., Duchovskis, P. & Bobinas, C. (2006). Changes in biologically active constituents during ripening in black currants. Journal of Fruit and Ornamental Plant Research, 14, p.237.
  60. Sellappan, S., Akoh, C.C. & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50(8), 2432-2438.
  61. Shiow, Y. W. & Hsin-Shan, L. (2000). Antioxidant activity in fruit and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry48(2), 140-146.
  62. Shires, D. (2015). Impact of bud/lateral thinning on subsequent growth and yield of erect blackberry. Presentation, tour XI International Rubus and Ribes Symposium, Asheville, North Carolina, June 21.
  63. Siriwoharn, T. & Wrolstad, R.E. (2004). Polyphenolic composition of Marion and Evergreen blackberries. Journal of Food Science, 69(4), 233-240.
  64. Skrede, G. & Wrolstad, R.E. (2002). Flavonoids from berries and grapes. Functional foods: Biochemical and Processing Aspects, 2, 71-133.
  65. Strik, B.C., Clark, J.R., Finn, C.E. & Buller, G. (2012). Management of primocane-fruiting blackberry: Impacts on yield, fruiting season, and cane architecture. HortScience47(5), pp. 593-598.
  66. Strik, B.C., Clark, J.R., Finn, C.E. & Bañados, M.P. (2007). Worldwide blackberry production.
    Journal of HortTechnology, 17, 205-213.
  67. Vagiri, M., Ekholm, A., Johansson, E., Andersson, S.C. & Rumpunen, K. (2015). Major phenolic compounds in black currant (Ribes nigrum) buds: Variation due to genotype, ontogenetic stage and location. LWT-Food Science and Technology, 63(2), 1274-1280.
  68. Vergara, M. F., Vargas, J. & Acuña, J. F. (2016). Physicochemical characteristics of blackberry (Rubus glaucus) fruits from four production zones of Cundinamarca, Colombia. Agronomía Colombiana, 34(3), 336-345.
  69. Wada, L. & Ou, B. (2002). Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agricultural and Food Chemistry, 50(12), 3495-3500.
  70. Wald, B., Galensa, R., Herrmann, K., Grotjahn, L. & Wray, V. (1986). Quercetin 3-O-[6 ″-(3-hydroxy-3-methylglutaroyl)-β-galactoside] from blackberries. Phytochemistry, 25(12), 2904-2905.
  71. Wang S.Y. (2007): Antioxidant capacity and phenolic content of berry fruits as affected by genotype, preharvest conditions, maturity, and handling. In: Zhao Y. (ed.): Berry Fruit: Valueadded Products for Health Promotion. Taylor and Francis Group, Boca Raton, p. 147-186.
  72. Wang, H., Cao, G. & Prior, R.L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705.
  73. Wang, S.Y. & Lin, H.S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140-146.
  74. Weber, C.A., Perkins-Veazie, P., Moore, P.P. & Howard, L. (2008). Variability of antioxidant content in raspberry germplasm, Acta Horticultureae, 777, 493-498.
  75. Wojdyło, A., Oszmiański, J. & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949.
  76. Yilmaz, K. U., Zengin, Y., Ercisli, S., Serce, S., Gunduz, K., Sengul, M. & Asma, B. M. (2009). Some selected physico-chemical characteristics of wild and cultivated blackberry fruits (Rubus fruticosus) from Turkey. Romanian Biotechnological Lettersm Biotech, 14(1), 4152-4163.
  77. Zozio, S., Pallet, D. & Dornier, M. (2011). Evaluation of anthocyanin stability during storage of a coloured drink made from extracts of the Andean blackberry (Rubus glaucus), açai (Euterpe oleracea Mart.) and black carrot (Daucus carota L.). Fruits66(3), 203-215.