Effect of γ-aminobutyric acid and spermine on morphophysiological traits and ‎pigmentation of Rosa damascena Mill. ‎

Document Type : Full Paper


1 Former M. Sc. Student, Faculty of‏ ‏Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Faculty of‏ ‏Agriculture, University of Zanjan, Zanjan, Iran


In order to evaluate the effect of γ-aminobutyric acid and spermine on some morphological and physiological traits of Damask rose plant, a completely randomized design was carried out in spring and summer 2017 and in Zanjan University in three replications. Experimental treatments consisted of three levels of gamma aminobutyric acid (1, 5, 10 mM) and three levels of spermine (0.5, 1, 1.5 mM). The evaluated traits included morphological traits (plant height, number of flowers, number of flowering branches, plant shadow diameter, average number of flowers per branch and petal dry weight) and physiological traits (total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, leaf flavonoids, petal flavonoids and peroxidase enzyme activity). The results showed that there was a significant difference in all the traits, except plant height, plant shadow diameter and number of flowering branches, compared to the control. Based on the results the concentration of 5 mM gamma aminobutyric acid and 1 mM spermine improved the morphophysiological traits in reproductive stage.


  1. Aghdam, M. S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M. A. A. & Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Scientia Horticulturae, 198, 52-60.
  2. Alborz, Z., Habibi, F. & Mortazavi, S. (2014). Effect of spraying the putrescine and spermine on vase life of Alestromeria cv. “Sukari”. Journal of Agricultural Crop Management, 17(1), 241-255. (in Farsi)
  3. Alcazar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F. & Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28, 1867-1876.
  4. Amiri Fadradi, R. & Hosseini, A. H. (2013). Importance of Ornamental-Medicinal Plants in Urban Green Space for Improving Human Welfare. In: Proceeding of 3rd National Conference on Medicinal plants, 20-21 Nov., Islamic Azad University of Amol, Amol, Iran, pp. 12-17. (in Farsi)
  5. Ashrafuzzaman, M., Razi Ismail, M., Abdullah IbnaFazal, K. M., Uddin, M.K. & Prodhan A.K.M.A. (2010). Effect of GABA application on the growth and yield of bitter gourd (Momordica charantia). International Journal of Agriculture & Biology, 12(1), 129-132.
  6. Babaei, A., Tabaei-Aghdaei, S.R., Khosh Khui, M., Omidbaigi, R., Naghavi, M.R. & Assareh, M.H. (2008). Rosa damascena (Rosaceae) characters and their heritability analysis in Iran. Iranian Journal of Botany, 14(1), 75-80.
  7. Baniasadi, F., Safari, V. R. & Maghsoudi moud, A. A. (2014). Effect of spermidine and spermine on some growth parameters (Calendula officinalis L.). In: Proceeding of 1st National Congress on Flowers and Ornamental Plants, 21-24 Oct., National Institute of Flowers and Ornamental Plants, Karaj, Iran. 6, 21. (in Farsi)
  8. Barbosa, J., Singh, N., Cherry, J. & Locy, R. (2010). Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry, 48, 443-450.
  9. Bayanloo. (2017). Effect of γ-aminobutyric acid (GABA), humic acid and salicylic acid on physiological responses and antioxidant characters in Catharanthus roseus L. (G. Don). M.Sc. Thesis, University of Zanjan, Iran. (in Farsi)
  10. Bown, A., Hall, D. & MacGregor, K. (2002). Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiology, 129, 1430-1434.
  11. Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S. & Gu, W.B. (2010). Effects of exogenous spermine on sweet sorghum during germination under salinity. Biologia Plantarum, 54(1), 145-148.
  12. Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178-182.
  13. Chen Wei, Y., Sheng Gen, H., Yue Ming, J. & Su, Y. (2000). Effects of polyamines on biochemical and physiological changes and vase life of cut rose (Rosa chinensis Jacq. cv. Bellamie) flowers during senescence. Journal of Tropical and Subtropical Botany, 8(2),104-108.
  14. Chevallier, A. (1996). The Encyclopedia of Medicinal Plants. Dorling Kindersely, London, 336p.
  15. Deewatthanawong, R., Rowell, P. & Watkins, C. (2010). γ-amino butyric acid (GABA) metabolism in CO2 treated tomatoes. Postharvest Biology and Technology, 57, 97-105.
  16. Ding, Y.F., Liu, P., Chang, Y.X., Zhao, L., Han, D.G. & Xu, K.D. (2006). Effect of spermine on physiology of leaves and configuration of florescence of chrysanthemum. Journal of Hubei Agriculture Science, 6, 789-79.
  17. Emraei tabar, S., Ershadi, A. & Robati, T. (2016). The effect of putrescine and spermine on almond and peach drought tolerance. Journal of Agricultural Crop Management, 18(1), 203-218. (in Farsi).
  18. Fathollahi, A., Ghahremani, Z., Barzegar, T. & Nikbakht, J., (2016). Morpho-physiological responses of two Iranian cucumber accessions to application of γ-aminobutyric acid under water deficit stress. M.Sc. Thesis, University of Zanjan, Iran. (in Farsi)
  19. Ghahreman, A. (1996). Iranian coromophytes (herbal systematic) (Volume II). Academic Publishing Center, Tehran, 550 pp. (in Farsi)
  20. Hajiboland, R. & Ebrahimi, N. (2013). Effect of mild salinity and exogenous polyamines on growth, photosynthesis and phenolics metabolism in sugar beet plants. Iranian Journal of Plant Research. 26(3), 290-300. (in Farsi)
  21. Hassan, F.A.S., Ali, E.F. & Alamer, K.H. (2018). Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. South African Journal of Botany, 116 (2018), 96-102.
  22. Hemmatjo Mahmoudalilo, B., Asghari, M.R. & Hassanpour, H. (2016). Effect of postharvest treatment with gamma aminobutyric acid and salicylic acids on quality and storage life of Shablon plum (Prunus salicina L.). M.Sc. Thesis, Urmia University, Urmia, Iran. (in Farsi).
  23. Hoque, M.M. (2002). Effect of CI-IAA, GABA and TNZ-303 on growth, yield and contributing characters of wheat. M.Sc. Thesis, Department of Crop Botany., Bangladesh Agriculture University, Mymensingh.
  24. Hosseini Farahi, M. & Zadehbagheri, M. (2016). Effect of foliar application of polyamines on growth properties, vase life and endogenous plant growth regulators contents of cut rose flower (Rosa hybrida cv. Dolcvita). Iranian Journal of Horticultural Science. 47(4), 717-729. (in Farsi)
  25. Ismaeilkhan Zandi, M. R. & Danaee, E. (2014). The effect of pre-harvest application of putrescine, spermidine spermine and on some traits, enzymes and wearing the black baccara roses on the bush. Journal of Cellular and Molecular Biology, 9(1-2),11-21. (in Farsi)
  26. Jabbarzadeh, Z. (2003). Effective factors on micropropagation of Damask rose. M.Sc. Thesis, Shiraz University, Shiraz, Iran. (in Farsi)
  27. Kamyab, F. (2016). Effect of different polyamines on vase life, ethylene production and some physiological traits of Dianthus caryopyllus L. Cv. Red Corsa. Iranian Journal of Agronomy, 18(2), 275-288. (in Farsi)
  28. Kinnersley, A.M. & Lin, F. (2000). Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regulation, 32(1), 65-76.
  29. Krizek, D. T., Britz, S.J. & Mirecki, R.M. (1998). Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. new red fire lettuce. Physiology Plant, 103, 1-7.
  30. Kudori, M. & Taba'i Aghda'i, S.R. (2007). Performance appraisal and its components in Rosa damascena Mill. in Kerman province. Iranian Medicinal and Aromatic Plants Research Center, 23(1), 100-110. (in Farsi)
  31. Lanauskas, J., Uselis, N., Valisukaite, A. & Viskelis, P. (2006). Effect of foliar and soil applied fertilizerson strawberry healthiness, yield and berry quality. Agronomy Research, 4, 247-250.
  32. Lee, M. M., Lee, S. H. & Park, K. Y. (1997). Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. Journal of Plant Physiology, 151, 68-73.
  33. Lester, G.E. (2000). Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Science. 160, 105-112.
  34. Liu, J.H., Honda, C. & Moriguchi, T. (2006). Involvement of polyamine in floral and fruit development. Japan Agriculture Research Quart, 40, 51-58.
  35. Liu, J.H., Kitashiba, H., Wang, J., Ban, Y. & Moriguchi, T. (2007). Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 24, 117-126.
  36. Mac-Adam, J.W., Nelson, C.J. & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99, 872-878.
  37. Mousavi Rad, S.H. (2012). Effect of putrescine and spermine on fruit yield and quality of almond Cv. Yalda. MSc Thesis, Faculty of Agriculture Bu Ali Sina University, Hamedan, Iran. (in Farsi)
  38. Nahed, A.A., Taha Lobna, G. & Ibrahim Soad, S. (2009). Some studies on the effect of putrescine, ascorbic acid and thiamine on growth, flowering and some chemical constituents of gladiolus plants at Nubaria. Ozean Journal of Apple Science, 2(2), 12-23.
  39. Nayyar, H., Satwinder, K.A.U.R., Kumar, S., Singh, K. J. & Dhir, K. K. (2005). Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Botanical Bulletin of Academia Sinica, 46, 333-338.
  40. Nazarolmolk, E., Zahedi, B. & Zeinali, H. (2015). Relations between flower yield and its components in 10 genotypes of damask rose in Golpayegan. Iranian Journal of Horticulture Science, 48, 243-249. (in Farsi)
  41. Razmavar, Z., Farjadi Shakib, M. & Danaee, E. (2016). Effect of pulse putrescine, spermine and spermidine treatment on some quantitative, qualitative and vase life of cut rose flowers cv. Grand Prix. In: Proceeding of 9th Congress on Iranian Horticultural Science. 25-28 Jan., Shahid Chamran University of Ahvaz, Ahvaz, Iran, pp. 1-4. (in Farsi)
  42. Samsuzzaman, M. (2004). Effect of NAA and GABA on growth and yield contributing characters of groundnut (Doctoral dissertation). M.Sc. Thesis, Department of Crop Botany, Bangladesh Agriculture. University of Mymensingh, Bangladesh.
  43. Shi, S.Q., Shi, Z., Jiang, Z.P., Qi, L.W., Sun, X.M., Li, C.X., Liu, J.F., Xiao, W.F. & Zhang, S.G. (2010). Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant, Cell and Environment, 33(2), 149-162.
  44. Soleimani Aghdam, M., Naderi, R., Jannatizadeh, A., Askari Sarcheshmeh, M.A. & Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by gamma aminobutyric acid (GABA) treatments. Scientia Horticulturae, 198, 52-60.
  45. Tang, W. & Newton, J. R. (2005). Polyamines reduced salt induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Pinus virginia. Plant Growth Regulation, 46, 31-43.
  46. Vijayakumari, K. & Puthur, J.T., (2016). Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regulation, 78(1), 57-67.
  47. Wang, C.Y., Fan, L.Q., Gao, H.B., Wu, X.L., Li, J.R., Lv, G.Y. & Gong, B.B. (2014a). Polyamine biosynthesis and degradation are modulated by exogenous gamma aminobutyric acid in root-zone hypoxia-stressed melon roots. Plant Physiology and Biochemistry, 82, 17-26.
  48. Wang, Y., Luo, Z. & Huang, H. (2014b). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 4, 17-25.
  49. Yang, A.P., Cao, S.F., Yang, Z. F., Cai, Y. T. & Zheng, Y. H. (2011). C-aminobutyric acid treatment reduces chilling injury and activates the defense peach fruit. Food Chemistry, 129, 1619-1622.
  50. Yin, Y. G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H. & Matsukura, C. (2010). Metabolic alterations in organic acids and γ-aminobutyric acid in developing tomato (Solanum lycopersicum L.) fruits. Plant and Cell Physiology, 51(8), 1300-1314.
  51. Younesnia omran, F. (2015). The role of polyamines in salt stress tolerance under in-vitro condition in Lilium ledebourii Bioss. M.Sc. Thesis, Faculty of Agriculture Mohaghegh Ardebili University, Ardebil, Iran. (in Farsi)
  52. Yousefi, B. (2018). Evaluation of genetic diversity of flower yield and its components in 12 local genotypes of Rosa damascena Mill. in Kurdistan province. Iranian Journal of Horticulture Science, 50, 723-732. (in Farsi)
  53. Zadnour, P., Khosh-Khui, M. & Rahimian, A. (2011). Effects of putrescine, spermine and spermidine on flowering and vegetative growth of gladiolus plants. In: Proceeding of 7th Congress on Iranian Horticultural Science. 5-8 Sep., Isfehan University of Technology, Isfehan, Iran, pp. 651-654. (in Farsi)