Effect of day length and gibberrelic acid on some morphological and biochemical ‎characteristics of chrysanthemum

Document Type : Full Paper


1 Ph.D. Candidate, Faculty of Agriculture, Ferdowsi University of ‎Mashhad, Mashhad, Iran

2 Associate Professor and Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

4 Assistant Professor, Research Center for Plant Science, Ferdowsi University of Mashhad, Mashhad, Iran


In order to accelerate the flowering time in four late flowering chrysanthemum cultivars, the effect of different concentrations of gibberellic acid and day length on flowering time and some quantitative and qualitative characteristics, an experiment was conducted as a factorial split plot in a completely randomized design with three treatments and four replications. Cultivars included Ariamanesh, Roxana, Dina and Oran. Gibberellic acid treatment at four levels (0, 75, 150 and 300 mg/ l) and foliar application time at two levels (30 and 45 days after transplanting) were applied. Daytime treatments at three levels included 16 hours of light - 8 hours of darkness (control), 12 hours of light - 12 hours of darkness and 8 hours of light - 16 hours of darkness. In this experiment, the main and sub plots were day length and gibberellic acid, respectively. The studied traits included flowering stem length, flower number, flower diameter, dry weight of flowers and leaves, content of photosynthetic pigments, peroxidase and number of days to flowering. The results showed that the highest flower number, diameter and dry weight of flowers were obtained in the treatment of 300 mg/l gibberellic acid and 16 hours of darkness. Flowering time was accelerated by 300 mg/l gibberellic acid and 16 hours in the dark compared to the control for about 21 days. Dina cultivar was also recognized as the best cultivar in response to different levels of gibberellic acid and reduction in day length, so that the number of days to flowering in this cultivar compared to other cultivars showed a significant decrease.


  1. Arnon, D.I. (1949). Copper enzymes in isolation chloroplast phenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
  2. Chance, B. & Maehly, S.K. (1995). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775.
  3. Chang, S., Tsang, C. & Wen, S. (2006). Gibberellins in relation to flowering in Polianthes tuberosa. Physiologia Plantarum, 112(6), 429-432.
  4. Chehrazi1, M., Hosseini, H. R., Hashemi Dehkordi, E. & Khalil Asadi Vafa, Kh. (2017). The effects of gibberellic acid on some morpho-physiological haracteristics of two varieties of white and yellow flowers (Alba and Apollo) snapdragon (Antirrhinum majus). Iranian Journal of Horticultural Science, 48 (2), 265-273. (in Farsi)
  5. Dalal, S.R., Somavanshi, A.V. & Karate, G.D. (2009). Effect of gibberellic acid on growth, flowering, yield and quality of gerbera under polyhouse conditions. International Journal of Agricultural Science, 5(2), 355-356.
  6. Du Toit, E.S., Robbertse, P.J. & Niederwieser, J.G. (2004). Plant carbohydrate partitioning of Lachen alia cv. Ronina during bulb production. Scientia Horiculturae, 102(7), 433-440.
  7. El-Nagar, A. H., El-Naggar, A. A. M. & Naglaa, M. I. (2009). Effect of phosphorus application and gibberellic acid on the growth & flower quality of Dianthus caryophyllus L. American-Eurasian Journal of Agriculture and Environment Science, 6(4), 400-410.
  8. Gol H., Khattak, A.M. & Amin, N. (2006). Accelerating the growth of Araucaria heterophylla seedling through different GA3 concentration and nitrogen levels. Journal of Agriculture Biological Science, 1, 1030-1034.
  9. Heuvelink, E., Van Meeteren, U., Chang, L.N., Fancello, G. & Lee, J.H. (1998). The influence of temperature, photoperiod and plant density on external quality of cut chrysanthemum. XXV International Horticultural Congress, Brussels, p. 314.
  10. Higuchi, Y., Sumitomo, K., Oda, A., Shimizu, H. & Hisamatsu, T. (2012). Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. Journal of Plant Physiology, 169(18), 1789-1796.
  11. Ichimura, K. & Goto, R. (2000). Effects of gibberellin (GA3) on yellowing & vase life of Narcissus tazetta var. chinensis flowers Japan Socieity for Horticultural Science, 69(12), 423-427.
  12. Jiang, B.B., Chen, S.M., Miao, H.B., Zhang, S.M., Chen, F.D. & Fang, W.M. (2010). Changes of endogenous hormone levels during short-day inductive floral initiation and inflorescence differentiation of chrysanthemum morifolium ‘Jingyun’. International Journal of Plant Production, 4(2), 149-157.
  13. Kahar, S.A. (2008). Effects of photoperiod on growth and flowering of Chrysanthemum morifolium Ramat cv. Reagan Sunny. Journal of Tropical Agriculture and Food Science, 36(2), 179-186.
  14. Kazaz, S., Atilla Askin, M., Kilic, S. & Ersoy, N. (2010). Effects of day length and daminozide on the flowering, some quality parameters and chlorophyll content of Chrysanthemum morifolium Ramat. Scientific Research and Essays, 51 (2), 3281-3288.
  15. Kazaz, S. & Karagüzel, O. (2010). Influence of growth regulators on the growth and flowering characteristics of goldenrod (Solidago x Hybrida). European Journal of Scientific Research, 45(3), 498-507.
  16. Kjaer, K.H., Poire, R., Ottosen, C.O. & Walter, A. (2012). Rapid adjustment in chrysanthemum carbohydrate turnover and growth activity to a change in time-of-day application of light and daylength. Functional Plant Biology, 39, 639-649.
  17. Kumar, P., Raghava, S.P.S., Mishra, R.L. & Singh, K.P. (2003). Effect of GA3 on growth and yield of China aster. Journal of Ornamental Horticulture, 6(2), 110-112.
  18. Kumar, S. & Singh, M.C. (2017).Effect of photoperiod on growth characteristics in Chrysanthemum morifolium Ramat. cv. Zembla using high pressure sodium light. Re on Crops, 18 (1), 110-115.
  19. Kurilcik, A., Dapkuniene, S., Kurilcik, G., Zilinskaite, S., Zukauskas, A. & Duchovskis, P. (2008). Effect of the photoperiod duration on the growth of chrysanthemum plantlets in vitro. Sodininkyste Ir Daržininkyste, 27(2), 39-46.
  20. Levent Tuna, A., Kaya, C., Dikilitas, M. & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62, 1-9.
  21. Maggio A., Barbieri, G., Raimondi, G. & De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation, 29, 63-72.
  22. Mazher, Azza, Nahed, A. M., Abdel-aziz, G., El-Maadawy, E, Amal, Nasr, A. & Samah, M. El-Sayed. (2014). Effect of gibberellic acid and paclobutrazol on growth and chemical composition of Schefflera arboricola plants. Middle East Journal of Agriculture Research, 3(4), 782-792.
  23. Mukesh Singg, M. & Brij, L. A. (2015). Effect of photoperiod on flowering in ornamental annuals. Journal of Medicinal Plants Studies, 3(4), 121-126
  24. Nagarja, G. S., Gowda, J. V. & Farooqui, A. (2003). Effects of growth regulators on growth and flowering of tuberose cv. Single. Karantaka Journal of Agriculture Science, 12(6), 236- 238.
  25. Nuvale, M.U., Aklade, S.A., Desai, J.R. & Nannavare, P.V. (2010). Influence of PGR’s on growth, flowering and yield of chrysanthemum (Dendranthem grandiflora Tzvelev) cv. ‘IIHR-6’. International Journal of Pharmacy and Bioscience, 1 (2), 1-4.
  26. Nxumalo, S.S. & Wahome, P.K. (2010). Effects of application of short-days at different periods of the day on growth and flowering in chrysanthemum (Dendranthema grandiflorum). Journal of Agriculture and Social Sciences, 6, 39-42.
  27. Oxborough, K. (2004). Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. Journal of Experimental Botany, 55, 1195-1205.
  28. Pobudkiewicz, A. (2014). Effect of growth retardant on some morphological and physiological traits of chrysanthemum. Polish Journal of Natural Sciences, 29(4), 91-306.
  29. Ramesh, K., Kartar, S. & Reddy, B. S. (2002). Effect of planting time, photoperiod, GA3 and pinching on carnation. Journal of Ornamental Horticulture, 4, 20-23.
  30. Runkle, E. S. & Heins, R. D. (2006). Manipulating the light environment to control flowering and morphogenesis of herbaceous plants. Acta Horticulturae, 711, 51-60.
  31. Sachs, R.M. & Kofranek, A.M. (1963). Comparative cytological studies in inhibition and promotion of stem growth in Chrysanthemum morifolium. American Journal of Botany, 50, 772-779.
  32. Uppar, D. S., Patil, V. S., Deshpande, V. K. & Ravi, H. (2014). Effect of different growth regulators on seed yield and quality attributes in annual chrysanthemum (Chrysanthemum coronarium L.). Karnataka Journal of Agricultural Sciences, 27(2), 131-134.
  33. Schmidt, C., Bellé, AB., Nardi, C. & Toledo, AK. (2003). The gibberellic acid (GA3) in the cut chrysanthemum (Dedranthema grandiflora Tzevelev.) Viking: planting summer/autumn. Revista Ciência Rural, 33(2), 1451-1455.
  34. Schwabe, W.W. (2015). Factors controlling flowering of the chrysanthemum I. The effects of photoperiod and temporary chilling. Journal of Experimental Botany, 329-343.
  35. Sharma, C.P., Maurya, A.N., Srivastava, O.P. & Mishra, A. (2001). Role of GA3, maleic hydrazide and ethrel in modifying vegetative and floral characters of chrysanthemum (Chrysanthemum morifolium Ram.). The Orissa  Journal of Horticulture, 29(2), 35-40.
  36. Shoor, M., Tehrani Far, A., Nemati, H., Salah varzi, Y. & Alizadeh, B. (2008). Effect of gibberellic acid and cold storage on some quantitative traits of cut flowers (Poliatenus tuberosa L.). Agricultural Research: Water, Soil and Agricultural Plants, 4, 247-239. (in Farsi).
  37. Siddiqui, M.H., Al-Whaibi, M.H. & Basalah, M.O. (2011). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma, 248, 503-511.
  38. Silva Vieira, M., Ribeiro da, G., Pace Pereira Lima, A., Vacaro de Souza, P., Nepomuceno Costa, M., Santos, L. & Nelson, G. (2011). Effect of gibberellic acid on the quality of chrysanthemum (Dendranthema grandiflora L.) cv. Faroe. African Journal of Biotechnology, 10(71), 15933-15937.
  39. Thomas, S. G., Rieu, I. & Steber, C. M. (2005). Gibberellin metabolism and signaling. Vitamins & Hormones, 72, 289-338.
  40. Taiz, L. & Zeiger, E. (2006). Plant physiology. 4th edition. Sinauer Associates, Inc., Publishers, Sunderland.
  41. Teixeira da Silva, J. A. (2004). Ornamental chrysanthemums: improvement by biotechnology- Review of plant biotechnology and applied genetics. Plant Cell Tissue and Organ Culture, 79, 1-18.
  42. Tripathi, A. N., Tripathi, S. N., Shukla, R. K. & Pandey, G. (2003). Effect of GA, NAA and CCC on growth and flowering of French marigold (Tagetes patula). Journal of Applied Horticulture, 5(2), 112-113.
  43. Vrsek, H., Zidovec, V., Poje, M. & Coga, L. (2006). Influence of photoperiod and growth retardant on the growth and flowering of England aster. Acta Horticulturae, 711, 301-306.
  44. Ye, Z., Rodriguez, R., Tran, A., Hoang, H., de los Santos, D., Brown, S. & Vellanoweth, R. L. (2000). The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science, 158(1-2), 115-127.
  45.  Zai-qiang, Y., Wei-hong, L., Fa-di, C., Yi-ping, X. & Mao-qiong, Z. (2008). Effects of gibberellin on development and external quality of single flower cut Chrysanthemum morifolium Ramat. Plant Physiology Journal, 44(6), 1095-1098.