The effect of calcium nano-chelated sprays on physiological, morphological ‎parameters and vase life of gerbera

Document Type : Full Paper


1 M. Sc. Student , Faculty Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Associate Professor, Faculty Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran


In order to investigate the effect of various concentrations of nano-chelated calcium (0, 2 and 3 g/l) on growth, morphological parameters and vase life of three gerbera cultivars in hydroponic system, a factorial experiment based on compelitly randomized design with three replications was carried out. The results showed that nano-chelated calcium treatment increases the post-harvest vase life of gerbera cut flower. The highest vase life (10 days) belonged in 3 l/g of nano-chelated calcium in Intense cultivar and the lowest vase life (5 days) was observed in control Amlet cultivar. By nano - chelated calcium spraying the calcium content in the treated plants increased compared to the control plants. There was a positive relationship between the application of nano-chelated calcium and increased photosynthetic pigment, relative leaves water content, soluble carbohydrate content and stomata conduction, while there was no positive relationship between nano-chelated calcium and proline. However, in different growth factors, there was no significant difference between two levels of 2 g/l and 3g/l. Therefore 2 g/l nano-chelated calcium treatment before harvesting is recommended to improve the growth conditions as well as to improve the post-harvest survival of gerbera cut flower. 


  1. Abdel-Kader, H. & Rogers, M. N. (1985). Postharvest treatment of Gerbera jamesonii. In III International Symposium on Postharvest Physiology of Ornamentals, 181, 169-176.
  2. Albino-Garduno, R., Zavaleta-Mancera, H. A., Ruiz-Posadas, L. M., Sandoval-Villa, M. & Castillo-Morales, A. (2008). Respones of gerbera to calcium in hydroponics. Journal of Plant Nutrition, 31, 91-101.
  3. Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112- 121.
  4. Atkinson, C. J., Ruiz, L. P. & Mansfield, T. A. (1992) Calcium in xylem sap and the regulation of its delivery to the shoot. Journal of Experimental Botany, 43, 1315-1324.
  5. Bar-Tal, A., Bass, R., Ganmore- Neumann, R., Dik, A., Marissen, N., Silber, A., Davidov, S., Hazan, A., Kirshner, B. & Elad, Y. (2001). Rose flower poduction and quality as affected by Ca concentration in the petal. Agronomie, 21, 393-402.
  6. Bates, L., Waldren, R. & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  7. Chang, L., Wu, Y., Xu, W. W., Nikbakht, A. & Xia, Y. P. (2012). Effects of calcium and humic acid treatment on the growth and nutrient uptake of Oriental lily. African Journal of Biotechnology, 11, 2218-2222.
  8. Chen, D. S., Li, N. H., Wang, J. M., Ding, Y. X. & Wang, X.J. (2004). Effect of calcium chloride on preservation of cut flowers of gerbera hybrid (in Chinese). Acta Botanica Yunnanica, 26, 345-348.
  9. Dordas, C. (2009). Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare ssp. hirtum). Industrial Crops and Products, 29, 599-608.
  10. Fallahi, E.S., onway, W., Hickeyk, C. D. & Sams, C. E. (1997). The role of calcium and nitrogen in postharvest quality and disease resistance of apples. HortSciense, 32, 831-835.
  11. Gerasopolus, D. & Chebli, B. (1999). Effects of pre- and postharvest calcium applications on the vase-life of cut gerberas. Journal Horticultue Science and Biotechnology, 74, 78-81.
  12. Gerasopoulos, D. & Chebli, B. (1999). Effects of pre- and postharvest calcium applications on the presence of organic acids. Soil Sciense Socieity American Journal, 55, 670-675.
  13. Ghafouriyan, M., Roein, Z., & Shiri, M. A. (2019). Effect of inhibitors of lignin biosynthesis on vase life of gerbera cut flowers. Iranian Journal of Horticultural Science, 49, 903-914. (in Farsi).
  14. Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. Plant Cell, 17, 2142-2155.
  15. Irigoyen, J. J., Einerich, D. W. & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum84, 55-60.
  16. Khoshgoftarmanesh, A. (2008). Prencipale of plant nutrition. Isfehan University and Technology Publication. 462P. (in Farsi)
  17. Kokabi, S. & Tabatabaei, S. J. (2011). Effect of different ratios of potassium to calcium on the yield and quality of galia melons in hydroponic. Iranian Journal of Horticultural Science, 25, 178-184. (in Farsi)
  18. Konno, H., Yamaya, T., Yamasaki, Y. & Matsumoto, H. (1984). Pectic polysaccharide breakdown of cell walls in cucumber roots growth with calcium starvation. Plant Physiology, 76, 633-637.
  19. Lin, R. S. & Kuo, M. H. (2008). Ethylene biosynthesis and membrane microviscosity changes of cut rose Rosa hybrida L. 'Noblesse' by calcium chloride pulse and dry cold storage. Acta Horticulturae, 469, 469-474.
  20. Liu, R., Zhang, H. & Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients. Water, Air, and Soil Pollution, 227, 1-14.
  21. Mansfield, T. A., Hetherington, A. M. & Atkinson, C. J. (1990). Some current aspects of stomatal physiology. Annual Review of Plant Biology, 41, 55-75.
  22. Marschner, H. (2011). Marschner's mineral nutrition of higher plants (Trans. Ed. ^Eds. ed. Vol). Academic Press.
  23. Matysik, J., Bhalu, B. & Mohanty, P. (2002). Molecular mechanisms of quenching reactive oxygen species by proline under stress in plants. Current Sciense India, 82, 525- 532.
  24. Mohammadi, M., Liaghat, A. & Molavi, H. (2011). Simultaneous effect of deficit irrigation and salinity on yield and yield components of tomato under field conditions. Journal of Water and Soil, 24,583-592. (in Farsi)
  25. Mortazavi, N., Naderi, R., Khalighi, A., Babalar, M. & Allizadeh, H. (2007). The effect of cytokinin and calcium on cut flower quality in rose (Rosa hybrida L.) cv. Illona. Journal of Food Agricalture and Environment, 5, 311-313.
  26. Mortensen, L. M., Ottosen, C. O. & Gislerød, H. R. (2001). Effects of air humidity and K: Ca ratio on growth, morphology, flowering and keeping quality of pot roses. Scientia Horticulturae, 90, 131-141.
  27. Nabigol, A. (2012). Pre-harvest calcium sulphate application improves postharvest quality of cut rose flowers. African Journal Biotechnology, 11, 1078-1083.
  28. Nair, R., Varghese, S. H., Nair, B., Maekawa, G. T., Yoshida, Y.  & Kumar, D. S. (2010) Nanoparticulate material delivery to plants. Plant Sciense, 179, 154-163.
  29. Rane, M., Bawskar, M., Rathod, D., Nagaonkar, D. & Rai, M. (2015). Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 45-58.
  30. Ritchie, S. W., Nguyen, H. T. & Holaday, A. S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111.
  31. Saeedi, R., Etemadi, N., Nikbakht, A., Khoshgoftarmanesh, A. H. & Sabzalian, M. R. (2015). Calcium chelated with amino acids improves quality and postharvest life of lisianthus (Eustoma grandiflorum cv. Cinderella Lime). HortScience, 50, 1394-1398.
  32. Samadzadeh, H. & Kamyab, F. (2018). Effects of silver and calcium nanoparticles on vase life and some physiological traits of،Konst Coco٫ alstroemeria cut flower. Journal of Sciense & Technology of Greenhouse Culture, 8, 75-88. (in Farsi).
  33. Saure, M. C. (2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Scientia Horticulturae, 105, 65-89.
  34. Savvas, D. & Manos, G. (1999a). Automated composition control of nutrient solution in closed soilless culture systems. Journal of Agricaltural Engenier Research, 73, 29-33.
  35. Savvas, D. & Gizas, G. (2002b). Respons of hydroponically grown gerbera to nutrient solution recycling and different nutrient cation ratios. Scientia Horticulturae, 96, 267-280.
  36. Shams, M., Etemadi, N., Baninasab, B., Ramin, A. A. & Khoshgoftarmanesh, A. H. (2012). Effect of boron and calcium on growth and quality of ‘easy lover’cut rose. Journal of Plant Nutrition, 35, 1303-1313.
  37. Supanjani-Abdel, R., Tawaha, M., SukYang, M., ShimHan, H. & DengLee, K. (2005). Calcium effect on yield, mineral uptake and terpene components of hydroponic chrysanthemum coronariuml. Research Journal of Agriculture and Biological Sciences, 1, 146-151.
  38. Tahmasbi, F., Hassibi, P. & Meskarbashee, M. (2010). Effect of different salinity levels on some photosynthetic characters of canola (Brassica napus L.) cultivars. Pazhoheheshhaye Zeraei Iran, 14, 144-153. (in Farsi).
  39. Torre, S., Borochov, A. & Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Plant Physiology, 107, 214-219.
  40. Torre, S., Fjeld, T. & Gislerød, H. R. (2001a). Effects of air humidity and K/Ca ratio in the nutrient supply on growth and postharvest characteristics of cut roses. Scientia Horticulturae, 90, 291-304.
  41. Tüzel, İ. H., Tüzel, Y., Gül, A., Meriç, M. K., Yavuz, Ö. & Eltez, R. Z. (2001b). Comparison of open and closed systems on yield, water and nutrient consumption and their environmental impact. Acta Horticalturae, 554, 221-228.
  42. Yu, X. N., Lu, G. P., Cheng, F. Y. & Zheng, L. W. (2010). Effect of calcium on the stem quality of cut herbaceous peony. Natural Sciense, 36, 531-535.
  43. Zekki, H., Gauthier, L. & Gosselin, A. (1996). Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. Journal of American Society Horticulture Sciense, 121, 1082-1088.