Effect of mycorrhizal fungi on morphophysiologycal traits of Teucrium chamaedrys ‎L. under salt stress conditions

Document Type : Full Paper

Authors

1 M.Sc. Student, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

Abstract

Teucrium chamaedrys L. belongs to Lamiaceae family and besides its usage as a ground cover plant in landscape, it has medicinal properties as well. This greenhouse study was carried out in a factorial experiment based on completely randomized design with four replications to evaluate the effects of mycorrhizal fungi (non-inoculated, inoculated with Funneliformis mosseae, inoculated with Rhizophagus intraradices) on morphophysiological responses of T. chamaedrys L. under salinity stress (0, 60 and 120 mM NaCl). Under salinity conditions, application of mycorrhizal fungi increased root growth, chlorophyll, proline and phosphorus content and reduced electrolyte leakage and sodium content. The highest dry weight of root (44.53 g) was observed in 60 mM salinity using F. mosseae. In 120 mM salinty treatment, applicatin of F. mosseae caused 12.7 percent increas inleaf dry weight compared to non-inoculated plants. The highest sodium content (11.97 mg /g) was detected in 120 mM salinity treatment without inoculation. Non-stressed plants that inoculated with F. mosseae showed the maximum amount of phosphorus (23.98 mg /g). There was no significant difference between F. mosseae and R. intraradices treatments in chlorophyll, proline and ion leakage in all salinity levels. The results clarify that application of both F. mosseae and R. intraradices were beneficial for T. chamaedrys tolerance to salinity stress and this effect was more pronounced with F. mosseae.

Keywords


  1. Abbaspour, H., Fallahyan, F. & Fahimi, H. (2005). Effect of endomycorrhizal fungi and salt stress on nutrient acquisition and growth of Pistacia vera L. Pakistan Journal of Biological Sciences, 8, 1006-1010.
  2. Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51-54.
  3. Al-Karaki, G. N., Hammad, R. & Rusan, M. (2001). Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43-47.
  4. Al-Khaliel, A. S. (2010). Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant, Soil and Environment, 56(7), 318-324.
  5. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidases in Beta vulgaris. Plant Physiology, 24, 1-15.
  6. Asghari, H. R. (2008). Vesicular arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedling. International Journal of Plant Production,2, 243-256.
  7. Banwarie, L., Kaushik, S. K. & Gautam, R. C. (1994). Effect of soil moisture regime, kaolin spray and phosphorus fertilizer on nodulation, P uptake and water use of lentil (Lense culinaris). Indian Journal of Agronomy, 39, 241-245.
  8. Bates, S. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.
  9. Ben Hamed, K., Castagna, A., Salem, E., Ranieri, A. & Abdelly, C. (2007). Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53, 185-194.
  10. Bord, M., Dudhane, M. & Jite, P. K. (2010). Arbuscular Mycorrhizal (AM) fungi influences the photosynthetic activity, gowth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Scientia Biologica, 2, 64-71.
  11. Botrini, L., Lipucci, M., Paola, D. & Graifenberg, A. G. (2000). Potassium affects sodium content in tomato plants growing in hydroponic cultivation under saline- sodic strcss. HorScience, 35, 1220-1222.
  12. Bruno, M., Rosselli, S., Maggio, A., Piozzi, F., Scaglioni, L., Arnold, N. & Simmonds, M. S. J. (2004). Neoclerodanes from Teucrium oriental. Chemical and Pharmaceutical Bulletin, 52(12), 1497-1500.
  13. Chapman, H. D. & Pratt, F. P. (1982). Determination of minerals by titration method. Methods of Analysis for Soils, Plants and Water )2th ed.). Agriculture Division, California University.
  14. Dodd, J. (2000). The role of arbuscular mycorrhizal fungi in agro-natural ecosystems. Outlook on Agriculture, 29(1), 63-70.
  15. Dolatabadi, H., Mohammadi Goltapeh, E., Moieni, A. & Varma, A. (2012). Evaluation of different densities of auxin and endophytic fungi (Piriformospora indica and Sebacina vermifera) on Mentha piperita and Thymus vulgaris growth. Journal of Biotechnology, 11(7), 1644-1650.
  16. Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104, 1263-1280. 
  17. Farrokhvand, I., Reezi, S., Barzegar, R. & Fattahi, M. (2020). Effect of symbiosis of several mycorrhiza arbuscular fungi species on some quality ‎and physiological indices of potted lisianthus flower ‎(Eustoma grandiflorum ‘Matador Blue)‎. Iranian Journal of Horticultural Science, 50 (4), 815-824. (in Farsi)
  18. Feng, G., Zhang, F. S., Li, X. I., Tian, C. Y., Tang, C. & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by Arbuscular mycorrhizal is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185-190.
  19. Garg, N. & Chandel, S. (2011). Effect of mycorrhizal inoculation on growh, nitrogen fixation and nutrient uptake in Cicer arietinum (L.) under salt stress. Turkish Journal of Agriculture and Forestry, 35, 205-214.
  20. Garg, N. & Manchanda, G. (2008). Effect of Arbuscular mycorrhizal inoculation of saltinduced nodule senescence in Cajanus cajan (pigeonpea). Journal of Plant Growth Regulators, 27, 115-124.
  21. Garratt, L. C., Janagoudr, B. S., Lowe, K. C., Anthony, P., Power, J. B. & Davey, M. R. (2002). Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine, 33(4), 502-511.
  22. Ghollarata, M. & Raiesi. F. (2007). The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties. Soil Biology and Biochemistry, 39, 1699-1702.
  23. Giri, B. & Mukerji, K. G. (2004). Mycorrhizal inculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307-312.
  24. Giri, B., Kapoor, R. & Mukerji, K. G. (2002). Vesicular arbuscular (VA) mycorrhizal techniques/VAM technology in establishment of plants under salinity stress condition. In:  Mukerji, K. G., Manoracheir, C. & Singh, J. (Eds), Techniques in mycorrhizal studies. (pp. 313-327). Kluwer, Dordrecht.
  25. Giri, B., Kapoor, R. & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753-760.
  26. Hammer, E. C., Nasr, H., Pallon, J., Olsson, P. A. & Wallander, H. (2011). Elemental composition of Arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 21, 117-129.
  27. Havlin, J. L., Beaton, J. D., Tisdale, S. L. & Nelson, W. L. (2004). Soil Fertility and Fertilizers: An Introduction to Nutrient Management. (7th Ed.). Pearson Prentice Hall.
  28. Jindal, V., Atwal, A., Seckhon,  B. S. & Singh, R. (1993). Effect of Vesicular-arbuscular mycorrhizae on metabolism of moong plant under NaCl salinity. Plant Physiology and Biochemistry, 31, 475-481.
  29. Khan, M. A. & Duke, N. C. (2001). Halophytes- A resource for the future. Wetland Ecology and Management, 6,455-456.
  30. Kiarostami, K., Mohseni, R. & Saboora, A. (2010). Biochemical changes of Rosmarinus officinalis under salt stress. Journal of Stress Physiology and Biochemistry, 6(3), 114-122.
  31. Kurban, H., Saneoka, H., Nehira, K., Adilla, R., Premachandra, G. S. & Fujita, K. (1999). Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Science and Plant Nutrition, 45, 851-862.
  32. Lauchli, A. & Epstein, E. (1990). Plant responses to saline and sodic conditions. In: K. K. Tanji (Ed), Agricultural Salinity Assessment and Management. (pp. 113-137). ASCE, New York.
  33. Mandhanis, S., Madan, S. & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50(2), 227-231.
  34. Mozaffarian, V. )2015(. Identification of medicinal and aromatic plants of Iran. Farhang Moaser Publishers. (in Farsi)
  35. Mukerji, K. G., Manoharachary, C. & Chamola, B. P. (2002). Techniques in mycorrhizal studies. Kluwer Academic Publisher.
  36. Munns, R. (1993). Physiological responses limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environmental, 16, 15-24.
  37. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239-250.
  38. Munns, R., & Termaat, A. (1986). Whole plant response to salinity. Australian Journal of Plant Physiology, 13, 143-160.
  39. Orabi, S. A., Salman, S. R. & Shalaby, A. F. (2010). Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. World Journal of Agriculture Science, 6, 252-259.
  40. Ruiz-lozno, J. M. (2003). Arbuscular mycorrhiza symbiosis and alleviation of osmotic stress new perspectives for molecular studies. Mycorrhiz,13, 309-317.
  41. Safari Sinegani, A. A. & Elyasi Yeganeh, M. (2017). The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran. Biological Journal of Microorganism, 5, 43-59.
  42. Sannazzaro, A. I., Echeverria, M., Alberto, E. O., Ruiz, O. A. & Menendez, A. B. (2007). Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiology and Biochemistry, 45(1), 39-46.
  43. Shahbazi, Z., Salehi, A., Movahedi Dehnavi, M. & Farajee, H. (2019). The effect of organic fertilizer and mycorrhizal fungus on morphological characteristics, shoot biomass and mucilage of borage (Borago officinalis). Iranian Journal of Horticultural Science, 50 (3), 561-570. (in Farsi)
  44. Smith, S. E. & Read, D. J. (2008). Mycorrhizal symbiosis. (3th ed.). Academic, London, UK.
  45. Sultana, N., Ikeda, T. & Itoh, R. (1999). Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 42(3), 211-220.
  46. Tian, C.Y., Feng, G., Li, X. L. & Zhang, F. S. (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Applied Soil Ecology, 26(3), 143-148.
  47. Zubek, S., Blaszkowski, J. & Mleczko, P. (2011). Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Societatis Botanicorum Poloniae, 80(4(, 285-292.