The effect of humic acid on growth and some physiological responses in bermuda ‎grass subjected to salinity stress

Document Type : Full Paper


1 Ph.D. Candidate, Faculty of Agriculture and Food Industries, Science and Research Branch, Islamic Azad University Tehran, Iran ‎

2 Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran ‎

3 Associate Professor, Faculty of Agriculture, Ilam University, Ilam, Iran ‎

4 Assistant Professor, Faculty of Agriculture and Food Industries, Science and Research Branch, Islamic Azad University Tehran, ‎Iran ‎


In order to investigate effect of humic acid (HA) on growth and some physiological parameters of bermuda grass under salinity stress, a factorial experiment was cinducted. The first factor was humic acid at four levels ( 0, 50, 100 and 150 mg/l )  and the second factor was salinity at  four levels (0, 5, 7 and 9 ds/m ).  Results of variance analysis showed significant effects of the salinity and HA on plant growth parameters, photosynthetic pigments, malondialdehyde (MDA), proline and antioxidant enzyme activity. Results showed that salinity stress imposed negative effects on plant growth and productivity. In salinity conditions, fresh and dry weight, leaf area and photosynthetic pigments reduced, but proline, malondialdehyde, catalase and superoxide dismutase activities increased. HA application improved growth parameters and increased chlorophyll content, catalase and superoxide dismutase activities of bermuda grass subjected to salinity and provided significant protection against salinity stress compared to non-HA-treated plants. The highest salinity tolerance was obtained with 150 mg/l HA application. In general, the results indicated that HA application, by altering in some tolerant responses, could be effectively used to protect plants from the adverse effects of high salt concentration.


  1. Anjum, N. A. (2015). Book Review: Oxidative Damage to Plants-Antioxidant Networks and Signaling. Frontiers in Plant Science, 6. 452-453.
  2. Asadi vafa, K., Seiedi, M., Chehrazi, M., Sayari, M. & Moallemi, N. (2015). Effect of potassium nitrate (KNO3) on some morphological and physiological characteristics of two tropical lawn (Cynodon dactylon L. and Paspalum vaginatum L.) under salinity stress condition. Journal of Plant Production, 38(2), 121-133. (in Farsi)
  3. Bacilio, M., Moreno, M. & Bashan, Y. (2016). Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Applied Soil Ecology, 107, 394-404.
  4. Balakumbahan, R. & Rajamani, K. (2010). Effect of bio stimulants on growth and yield of senna (Cassia angustifolia var. KKM. 1). Journal of Horticultural Science & Ornamental Plants, 2(1), 8-16.
  5. Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
  6. Cacco, G., Attinà, E., Gelsomino, A. & Sidari, M. (2000). Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. Journal of Plant Nutrition and Soil Science163(3), 313-320.
  7. Cavalcanti, F. R., Lima, J. P. M. S., Ferreira-Silva, S. L., Viégas, R. A. & Silveira, J. A. G. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology164(5), 591-600.
  8. Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F. & Khan, F. A. (2016). Proline accumulation in plants: roles in stress tolerance and plant development. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer India.
  9. Delfine, S., Tognetti, R., Desiderio, E. & Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development25(2), 183-191.
  10. Dhindsa, R. S., Plumb-Dhindsa, P. & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany32(1), 93-101.
  11. Esringü, A., Kaynar, D., Turan, M. & Ercisli, S. (2016). Ameliorative effect of humic acid and plant growth-promoting rhizobacteria (PGPR) on Hungarian vetch plants under salinity stress. Communications in Soil Science and Plant Analysis47(5), 602-618.
  12. Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z. & Zheng, C. S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177, 118-123.
  13. García, A. C., Olaetxea, M., Santos, L. A., Mora, V., Baigorri, R., Fuentes, M. & Garcia-Mina, J. M. (2016). Involvement of hormone-and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Research International, 216, 1-13. 
  14. García, A. C., Santos, L. A., Izquierdo, F. G., Sperandio, M. V. L., Castro, R. N. & Berbara, R. L. L. (2012). Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, 47, 203-208.
  15. Ghanbari, F., Amirinejad, A., Sayyari, M. & Kordi, S. (2016). Effect of Salicylic acid on salinity and alkalinity resistance in sweet pepper plant. Journal of Plant Researches, 29(1), 130-141. (In Farsi)
  16. Irigoyen, J. J., Einerich, D. W. & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Acta Physiologia Plantarum84(1), 55-60.
  17. Jarošová, M., Klejdus, B., Kováčik, J., Babula, P. & Hedbavny, J. (2016). Humic acid protects barley against salinity. Acta Physiologiae Plantarum38(6), 1-9.
  18. Jini, D. & Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science24(2), 97-108.
  19. Maali-Amiri, R., Goldenkova-Pavlova, I. V., Yur’eva, N. O., Pchelkin, V. P., Tsydendambaev, V. D., Vereshchagin, A. G. & Nosov, A. M. (2007). Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium. Russian Journal of Plant Physiology54(5), 600-606.
  20. Megainid. A.S., AL-Zahrani. H.S. & Selim, EL.M. M. (2015). Effect of humic acid application on growth and chlorophyll contents of common cean plants (Phaseolusvulgaris L.) under salinity stress conditions. Iinternational Journal of Innovative Science Engineering and Technology, (4), 2347-6710.
  21. Meganid, A. S., Al-Zahrani, H. S. & El-Metwally, M. S. (2015). Effect of humic acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. International Journal of Innovative Research in Science, Engineering and Technology4(5), 2651-2660.
  22. Miller, G. A. D., Suzuki, N., Cifici, S. & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment33(4), 453-467.
  23. Mohd, T., Osumanu, H. A. & Nik, M. (2009). Effect of mixing urea with humic acid and acid sulphate soil on ammonia loss, exchangeable ammonium and available nitrate. American Journal of Environmental Sciences5(5), 588-591.
  24. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment25(2), 239-250.
  25. Nardi, S., Pizzeghello, D., Muscolo, A. & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry34(11), 1527-1536.
  26. Nardi, S., Pizzeghell, O. D., Muscolo, A. & Vianello, A., (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34, 1527-1536.
  27. Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety60(3), 324-349.
  28. Puyang, X., An, M., Han, L. & Zhang, X. (2015). Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety117, 96-106.
  29. Rahi, A., Mirzaie-Nodoushan, H., Danaee, M. & Azizi, F. (2013). Effects of humic acid on vegetative characteristics of Festuca arundinaceaIranian Journal of Rangeland and Desert Research, 19(4), 722-736. (In Farsi)
  30. Santiago, A., Quintero, J. M., Carmona, E. & Delgado, A. (2008). Humic substances increase the effectiveness of iron sulfate and Vivianite preventing iron chlorosis in white lupin. Biology and Fertility of Soils44(6), 875-883.
  31. Sefc, K. M., Guggenberger, S., Regner, F., Lexer, C., Glssl, J. & Steinkellner, H. (1998b). Genetic analysis of grape berries and raisins using microsatellite markers. Vitis, 37, 123-125.
  32. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26.
  33. Stewart, R. R. & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology65(2), 245-248.
  34. Strain, H. H. & Svec, W. A. (1966). Extraction, separation, estimation, and isolation of the chlorophylls. The Chlorophylls, 21-66.
  35. Tan, K. H. & Nopamornbodi, V. (1979). Effect of different levels of humic acids on nutrient content andgrowth of corn. Journal of Plant and Soil, 51, 283-287.
  36. Verlinden, G., Coussens, T., De Vliegher, A., Baert, G. & Haesaert, G. (2010). Effect of humic substances on nutrient uptake by herbage and on production and nutritive value of herbage from sown grass pastures. Grass and Forage Science65(1), 133-144.
  37. Yadav, S., Irfan, M., Ahmad, A. & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology32(5), 667-685.
  38. Zhang, L., Lai, J., Gao, M. & Ashraf, M. (2014). Exogenous glycinebetaine and humic acid improve growth, nitrogen status, photosynthesis, and antioxidant defense system and confer tolerance to nitrogen stress in maize seedlings. Journal of Plant Interactions9(1), 159-166.
  39. Zhang, X. & Ervin, E. H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science44(5), 1737-1745.