Effects of biochar application under organic and chemical nutrition on yield, some ‎morpho-physiological and nutritional traits of tomato cv. Ismir ‎(Solanum lycopersicum Mill cv. Izmir)‎

Document Type : Full Paper


1 Ph.D. Candidate, Faculty of Agriculture and Food Industries, Science and Research Branch, Islamic Azad ‎University, Tehran, Iran

2 Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Assistant Professor, Faculty of Agriculture and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, ‎Iran

4 Associate Professor, Faculty of Agriculture, Karaj Branch, Islamic Azad University, Karaj, Iran‎


In order to study the effects of biochar and chicken manure tea compost on the nutrition responses and growth characteristics of tomato plants (Lycopersicon esculentum), a greenhouse experiment was carried out. The experiment was designed as factorial based on randomized completeblock design with three replications. Factors included biochar in two levels (including 0 and 10 t/ha) and organic and chemical nutrition in six levels (including fresh chicken manure 30 t/ha, three levels of chicken manure compost tea 1:4, 1:8, and 1:12 chicken manure-to-water ratio by w/w, Macromix and Polymicro chemical fertilizer 1 lit/ha and water as control). The results showed there were significant differences among different treatments in regard to soil total N, Fe, Mn, Zn and Cu. The highest leaf N, shoot dry weight and yield were obtained in T1B1 treatment(biochar and chemical ferlilizer) and the maximum manganese, zinc, copper and iron were obtained in T3B1 (compost tea 1:4 and biochar) and T4B1 (compost tea 1:8 and biochar) treatments. T3B1 (compost tea 1:8 and biochar) treatment contained the highest value of DPPH IC50 (3.75 mg), vitamin C (29.03 mg/100g), however, no significant differences were observed between biochar and biochar plus nutrition on soluble solids and titratable acidity compared with control.


  1. Agegnehu, G., Bass, A. M., Nelson, P. N. & Bird M. I. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295-306.
  2. Agegnehu, G., Srivastava A.K. & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170.
  3. Ali-Ehyaee, M. & Behbahanizadeh, A.A. (1994). Soil Analysis Methods. Technical Bulletin No. 893.Taat, Tehran, Iran. (In Farsi)
  4. AOAC. (1990). Official methods of analysis, 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  5. Askari Sarcheshmeh, M. A., Karbasi M., Talaei, A., Babalar, M., Aghajani, S. (2019). Effect of foliar application of iron and zink on some quantitative and qualitative attributes of apple fruit Delbar estival. Iranian Journal of Horticultural Science, 50 (2), 265-274. (In Farsi)
  6. Awad, Y. M., Lee, S. E., Ahmed, M. B. M., Vu, N. T., Farooq, M., Kim, S., Kim, H. S., Vithanage, M., Usman, A. R. A., Al-Wabel, M., Kwon, E. E. & Ok, Y. S. (2017). Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production, 156, 581-588.
  7. Bartlett, R.J. & James, B.R. (1993). Redox chemistry of soils. Advances in Agronomy, 50, 151–208.
  8. Brand-Williams, W., Cuvelier M.E. & Berset C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28 (1), 25-30.
  9. Bremner, J. M. 1965. Total nitrogen. In: C. A. Black (ed.) Methods of soil analysis. Part 2: Chemical and microbial properties. Number 9 in series Agronomy, American Society of Agronomy, Inc. Publisher, Madison USA. pp: 1049-1178.
  10. Cantrell, K. B., Hunt P. G., Uchimiya M., Novak, J. M. & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107, 419-428.
  11. Chunxue, Y., Joseph, S., Lianqing, L., Genxing, P., Lin, Y., Munroe, P., Taherymoosavi, S., Van Zwieten, L., Thomas, T., Nielsen, S.  & Donne, S. (2015). Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere, 25(5), 703-712.
  12. Doan, T. T., Tureaux, T. H. D., Rumpe, C., Janeau, J. L., Jouque, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of the Total Environment, 514, 147-15 4.
  13. Dorais, M., Ehret, D. L. & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews, 7, 231-250.
  14. Emami, A. (1996). Description of plant analysis method. Soil and Water Institute, Tehran. Iran.
    (In Farsi)
  15. Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653.
  16. Gamliel, A. & Stapleton, J. J. (1993). Effect of chicken compost or ammonium phosphate and solarization on pathogen control, rhizosphere microorganisms, and lettuce growth. Plant Disease, 77, 886-891.
  17. Ghorbani, R., Koocheki, A., Jahan, M. & Asadi, G. A. (2008). Impact of organic amendments and compost extracts on tomato production and storability in agroecological systems. Agronomy Sustainable Development, 28, 307-311.
  18. Hossain, M. K., Strezov, V., Chan, K. Y. & Nelson, P. F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78, 1167-1171.
  19. Jeffery, S., Verheijen, F. G. A., van der Velde, M. & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144, 175-187.
  20. Lehmann, J. & Joseph, S. (2009). Biochar for environmental management: Science and Technology. First ed. Earthscan, London & Sterling, VA. 416P.
  21. Lehmann, J., Matthias C.R., Thies, J., Masiello, C. A., Hockaday, W. C. & Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology & Biochemistry, 43, 1812-1836.
  22. Lin, Y., Munroe, P., Joseph, S., Henderson, R. & Ziolkowski, A. (2011). Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 87, 151-157.
  23. Marti´nez-Valverde I., Periago M. J., Provan G. & Chesson A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato. Journal of the Science of Food and Agriculture, 82, 323-330.
  24. Medic-Pap, S., Prvulovic, D., Takac, A., Vlajic, S., Danojevic, D., Takac, A. & Masirevic, S. (2015). Influence of tomato genotype to phenolic compounds content and antioxidant activity as reaction to early blight. Genetika, 47 (3), 1099-1110.
  25. Méndez, A., Gómez, A., Paz-Ferreiro, J. & Gascó G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89, 1354-1359.
  26. Mitchell A. E., Hong Y. J., Koh E., Barrett D. M., Bryant D. E., Denison R. F. & Kaffka, S. (2007). Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. Journal of Agricultural and Food Chemistry, 55, 6154–6159.
  27. Paneque, M., De la Rosa, J. M., Franco-Navarro, J. D., Colmenero-Flores, J. M. & Knicker, H. (2016). Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 147, 280-287.
  28. Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M.& Pozzi A. (2015).Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop & Pasture Science, 66, 747-755.
  29. Schulz, H. & Glaser, B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition Soil Science, 175, 410-422.
  30. Silber, A., Levkovitch, I. & Graber, E.R. (2010). pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environmental Science & Technology, 44, 9318-9323.
  31. Toor, R. K., Savage, G. P. & Heeb, A. (2006). Influence of different types of fertilisers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, 19, 20-27.
  32. Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34, 231-238.
  33. Vaccari, F. P., Maienza, A., Miglietta, F. Baronti, S. Lonardo, S. Di., Giagnoni, L., Lagomarsino, A., Pozzi, A., Pusceddu, E., Ranieri, R., Valboa, G. & Genesio, L. (2015). Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 207, 163-170.
  34. Vallverdú-Queralt, A., Medina-Remón, A., Casals-Ribes, I. & Lamuela-Raventos, R. M. (2012). Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chemistry, 130, 222-227.
  35. Vinha, A. F., Barreira, S. V.P., Costa, A. S. G., Alves, R. C. & Oliveira, M. B. P.P. (2014). Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food and Chemical Toxicology, 67, 139-144.
  36. Warman, P. R. & Cooper J. M. (2000). Fertilization of a mixed forage crop with fresh and composted chicken manure and NPK fertilizer: Effects on soil and tissue Ca, Mg, S, B, Cu, Fe, Mn and Zn. Canadian Journal of Soil Science, 80, 345-352.
  37. Yao, Y., Gao, B., Zhang, M., Inyang, M. & Zimmerman, A. R. (2012).  Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemospher, 89, 1467-1471.