Effects of planting date and nano fertilizers on quantity and quality features of ‎saffron in Guilan

Document Type : Full Paper


1 Associate Professor, Department of Horticulture, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Former M. Sc. Student, Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran

3 Associate Professor, Department of Plant Production, University of Torbat Heydarieh, Torbat Heydarieh, ‎Iran


The present study aimed to study quantitative and qualitative traits of saffron (Crocus sativus L.) as affected by complete nano fertilizer (0 (K0), 5 (K1), and 10 (K2) mg l-1), carbon nanotube (0 (L0) and 2 (L1) mg l-1) and different planting dates (August 15 (T1), August 26 (T2), and September 5 (T3)) in a factorial experiment based on a RCBD with three replications. It was found that delayed sowing accompanied with the application of nano fertilizers promoted quantitative and qualitative traits; so that in the application of "L1K1T3" for the duration of flowering period (14.66 days), flower number (4.033), stigma fresh weight (0.0488 mg), stigma dry weight (0.022 mg), and safranal (44.56), picrocrocin (81.13) and crocin (188.33); However, "L1K1T3" is in all mentioned traits other than picrocrocin did not significant difference with "L1K2T3". The highest anthocyanin was obtained under "L1K1T3", "L1K2T3", "L1K2T2" and "L1K1T3". In total, it can be said that the quantitative and qualitative yield of saffron was improved by the application of nano fertilizers – through making the optimum nutrients available-and the planting of roots in August-September – through making the optimum moisture and temperature available.


  1. Amiri, M.E. (2008). Impact of animal manures and chemical fertilizers on yield components of saffron (Crocus sativus L.). American-Eurasian Journal of Agricultural & Environmental Sciences, 4(3), 274-279.
  2. Asadi, G., Rezvani Moghaddam, P. & Hassanzadeh Aval, F. (2014). Effects of soil and foliar applications of nutrients on corm growth and flower yield of saffron (Crocus sativus L.) in six-year-old farm. Journal of Saffron Agronomy and Technology, 2(1), 31-44. (in Farsi)
  3. Baghai, N. & Maleki Farahani, S. (2014). Comparison of nano and micro chelated iron fertilizers on quantitative yield and assimilates allocation of saffron (Crocus sativus L.). Journal of Saffron Research, 2(1), 156-169. (in Farsi)
  4. Baruah, S. & Dutta, J. (2009). Nanotechnology applications in sensing and pollution degradation in agriculture: A review. Environmental Chemistry Letters, 7, 191-204.
  5. Behdani, M.A. & Fallahi, H.R. (2015). Saffron: Technical Knowledge Based on Research Approaches. University of Birjand Press. pp. 411. (in Farsi)
  6. Behdani, M.A., Koochaki, A., Nassiri Mahalati, M. & Rezvani Moghadam, P. (2005). Evaluation of quantitative relationships between saffron yield and nutrition (on farm trial). Iranian Journal of Field Crops Research, 3(1), 1-14. (in Farsi)
  7. Behnia, M.R. (2012). Saffron: History, botany, chemistry, production. University of Tehran Press, pp. 506.
  8. Benzon, H.R.L., Rubenecia, M.R.U., Ultra, V.U. & Lee, S.C. (2015). Nano fertilizer affects the growth development and chemical properties of rice. International Journal of Agronomy and Agricultural Research, 7 (1), 105-117.
  9. Cavusoglu, A., Erkel, E.I. & Sülüsglu, M. (2009). Saffron (Crocus sativus L.) studies with two mother corm dimensions on yield and harvest period under greenhouse condition. American-Eurasian Journal of Sustainable Agriculture, 3, 126-129.
  10. Chaji, N., Khorassani, R., Astaraei, A. & Lakzian, A. (2014). Effect of phosphorous and nitrogen on vegetative growth and production of daughter corms of saffron. Journal of Saffron Research, 1(1), 1-12. (in Farsi)
  11. Davoody, N., Seghatoleslami, M.J., Mousavi, G.R. & Azari Nasrabad, A. (2013). The effect of foliar application of nano-zinc oxide on yield and water use efficiency of foxtail millet in drought stress conditions. Environmental Stresses in Crop Sciences, 6(1), 37-46. (in Farsi)
  12. DeRosa, M.R., Monreal, C., Schnitzer, M., Walsh, R. & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5, 91.
  13. Ghobadi, F., Ghorbani Javid, M. & Sorooshzadeh, A. (2015). Effects of planting date and corm size on flower yield and physiological traits of saffron (Crocus sativus L.) under varamin plain climatic conditions. Saffron Agronomy and Technology, 2 (4), 265-276. (in Farsi)
  14. Heydari, Z., Besharati, H. & Maleki Farahani, S. (2014). Effect of some chemical fertilizer and biofertilizer on quantitative and qualitative characteristics of saffron. Journal of Saffron Agronomy and Technology, 2(3), 177-189. (in Farsi)
  15. Hosseini, M., Sadeghian, B. & Aghamiri S.A. (2004). Influence of foliar fertilization on yield of saffron (Crocus sativus L.). Acta Horticulturae, 650, 207-209.
  16. Institute of Standard & Industrial Research Organization of Iran. 1993. Saffron – Specification, No. 259-2. (in Farsi)
  17. Khodakovskaya, M., Dervishi, E., Yang Xu, M., Li, Zh., Watanabe, F. & Biris, S.A. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano (ACS Publications), 3(10), 3221-3227.
  18. Koocheki, A., Jahani, M., Tabrizi, L. & Mohamadabadi, A. (2011). Evaluation of biological and chemical fertilizer and corms density on flower yield and characteristics of saffron (Crocus sativus L.). Journal of Water and Soil, 25 (1), 206-196.
  19. Koocheki, V., Jahani, M., Tabrizi, L. & Mohammadabadi, A.A. (2011). Investigation on the effect of biofertilizer, chemical fertilizer and plant density on yield and corm criteria of saffron (Crocus sativus L.). Journal of Water and Soil, 25 (1), 196-206. (in Farsi)
  20. Mazumdar, B.C. & Majumdar, K. (2003). Methods on physicochemical analysis of fruits. Daya Publishing House, 187p.
  21. Mohammadi Mirik, A.A., Saeidi, Gh. A. & Rezaei A.A.M. (2009). Interaction effects of planting date with seeding rate on agronomic traits of different genotypes of flax. Iranian Journal of Field Crops Research, 7(1), 221-230. (in Farsi)
  22. Mohammadi, S. & Azizi, M. (2015). Effects of different levels of Farmax® nano fertilizer and foliar spraying time on growth and effective substance of German chamomile (Matricaria recutita). Journal of Horticulture Science, 28 (4), 435-145. (in Farsi)
  23. Molina, R.V., Garcia-Luis, A., Valero, M., Navarro, Y. & Guardiola, J.L. (2004). Extending the harvest period of saffron. Acta Horticulturae, 650, 219-225.
  24. Mondal, A., Basu, R., Das, S. & Nandy, P. (2011). Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. Journal of Nanoparticle Research, 13, 4519-4528.
  25. Naderi Darbaghshahi, M.R., Khajebashi, S.M., Banitaba, S.A.R. & Dehdashti, S.M. (2008). Effects of planting method, density and depth on yield and production period of saffron (Crocus sativusL.) in Isfahan region. Seed and Plant Improvment Journal, 24 (4), 643-657. (In Farsi)
  26. Naderi, M.R. & Danesh Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Science, 5 (19), 2229-2232.
  27. Naderian Far, M., Ansary, H., Azizi, M. & Ziaei, A.N. (2015). Effect of deficit irrigation and fertilization on yield and yield components of basil in two soil textures. Journal Water Research in Agriculture, 29(3), 353-366. (in Farsi)
  28. Naghdi Badi, H., Omidi, H., Golzad, A., Torabi, H. & Fotookian, M.H. (2011). Change in crocin, safranal and picrocrocin content and agronomical characters of saffron (Crocus sativus L.) under biological and chemical of phosphorous fertilizers. Journal of Medicinal Plants, 4 (40), 58-68. (in Farsi)
  29. Nalwade, A.R. & Bonawate, G.S. (2014). Carbon nanomaterials stimulate the growth of onion (Allium cepa L.) var. Phule Suvarana. International Journal of Advanced Scientific and Technical Research, 4(2), 862-869.
  30. Omidbaigi, R. (2011). Production and processing of medicinal plants. Beh Nashr Publications Mashhad, Vol. 2, pp. 438. (In Farsi)
  31. Pazoki, A., Karaminejad, M & Foladi Targhi, A. (2011). Effects of planting dates and genotypes on yield of saffron (Crocus sativus L.) in Natanz region. Crop Physiology, 2(8), 3-12.
  32. Rashidi, S. (2012). Nanofertilizer in the environment. In: Proceedings 1th Nano Technology and its Application in Agriculture and Natural Resources Conference, 15-16 May, University of Tehran, Karaj, Iran, pp. 1-7. (in Farsi)
  33. Rezvani Moghaddam, P., Koocheki, A., Molafilabi, A. & Seyyedi, M. (2013). Effect of biological and chemical fertilizers on replacement corm and flower yield of saffron (Crocus sativus L.). Iranian Journal of Crop Sciences, 15 (3), 234-246. (in Farsi)
  34. Rostami, M. & Mohammadi, H. (2013). Effects of planting date and corm density on growth and yield of saffron (Crocus sativus L.) under Malayer climatic conditions. Agroecology, 5(1), 27-38. (in Farsi)
  35. Sadeghi, S.M., Dehnadi-Moghaddam, G. & Dooroodian, H. (2014). Evaluation of effects of date, depth and corm sowing distance on corms growth and stigma yield of saffron (Crocus sativus L.) in Langarood, Guilan province. Journal of Saffron Agronomy and Technology, 2(2), 45-54. (in Farsi)
  36. Saiedirad, M.H. & Mokhtarian, A. (2009). The Hand book of saffron production. TAK Publication, pp. 103.
  37. Sarmadnia, Gh. & Koocheki, A. (1987). Physiology of crop plants. Jahad Daneshgahi Mashhad Press, pp. 400. (in Farsi)
  38. Tiwari, D.K.N., Villasen, L.M., Villegas, J., Carreto Montoya, L. & Borjas Garcıa, S.E. (2014). Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nano agriculture. Applied Nanoscience, 4, 577-591.
  39. Tripathi, S., Sonkar, S.K. & Sarkar, S. (2011). Growth stimulation of cheakpea (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale,3, 1176-1181.
  40. Villagarcia, H., Dervishi, E., Silva, K., Biris, A.S. & Khodakovskaya, M.V. (2012). Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small, 8, 2328-2334. https://doi.org/10.1002/smll.201102661.
  41. Wang, H.F., Wang, J., Deng, X.Y., Sun, H.F., Shi, Z.J., Gu, Z.N., Liu, Y.F. & Zhao, Y.L. (2004). Bio distribution of carbon single-wall carbon nanotubes in mice. Journal of Nanoscience & Nanotechnology, 4, 1019-1024.