Effect of foliar application of Brassinosteroids on growth, yield and fruit quality of two strawberry cultivars under salt stress in soilless culture

Document Type : Full Paper


1 Former Ph.D. Student, Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, Iran

2 Professor, Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, Iran

3 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, Iran

4 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran


Due to lack of fresh water sources, and the inevitability of using unconventional waters, a study was conducted to determine the tolerance of strawberry to salinity for ʻParosʼ and ʻAromasʼ cultivars and the possible role of brassinosteroids in reducing the negative effects of salinity. In this study the effect of 24-epibrassinolide concentrations (0, 0.25, 0.5 and 1 mg/L as foliar spray) and salinity levels (0, 20, 40 and 60 mM in nutrient solution) were evaluated on growth, yield and fruit quality of strawberry in soilless culture under greenhouse conditions. Rooted daughter plants of 'Aromas’ and ‘Paros’ strawberry cultivars were potted in 4 L plastic pots filled with cocopeat and perlite (1:1 V/V). Results showed that salinity (60 mM) reduced 44% of strawberry yield. The use of brassinosteroid could reduce the negative effect of salinity on reducing yield and all the concentrations used of BRs could increase the yield compared to the control. Foliar application of brassinosteroids at 0.5 and 1 mg / L resulted in increased leaf area, shoot and root dry weight and yield. Foliar application of brassinosteroids at 0.5 and 1 mg / L levels reduced the effects of salinity stress. In general, BRs could mitigate the detrimental effect of saline conditions on growth of strawberry plants, especially at 0.5 and 1 mg/L concentrations. In general, the use of brassinosteroids, especially at a concentration of 1 mg / L, under mild salinity conditions could reduce the effect of salinity stress on strawberry growth, and this effect was more pronounced on the cultivar ʻAromasʼ. Therefore, based on the results, this method is a suitable solution for solving problems caused by salt stress.


Main Subjects

  1. Ali, B. (2017). Practical applications of brassinosteroids in horticulture—some field perspectives. Scientia Horticulturae, 225, 15-21.
  2. Bajguz, A. & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62(7), 1027-1046.
  3. Dong, Y. J., Wang, W. W., Hu, G. Q., Chen, W. F., Zhuge, Y. P., Wang, Z. L. & He, M. R. (2017). Role of Exogenous 24-Epibrassinolide in Enhancing the Salt Tolerance of Wheat Seedlings. Journal of Soil Science and Plant Nutrition, 17(3), 554-569.
  4. Eleiwa, M. E., Bafeel, S. O. & Ibrahim, S. A. (2011). Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions I-growth parameters and photosynthetic pigments. Austria Journal of Basic Apply Science, 5(5), 58-65.
  5. El-Mashad, A. A. A. & Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625-635.
  6. Eshghi, S. Moharami, S. & Jamali, B. (2017). Effect of salicylic acid on growth, yield and fruit quality of strawberry cv. ʻParosʼ under salinity conditions. Greenhouse Culture Science and Technology, Isfahan University of Technology, 7(28), 163-173. (in Farsi)
  7. Fariduddin, Q., Ahmed, M., Mir, B. A., Yusuf, M. & Khan, T. A. (2015). 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica junceaEnvironmental Science and Pollution Research, 22(15), 11349-11359.
  8. Fariduddin, Q., Yusuf, M., Hayat, S. & Ahmad, A. (2009). Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environmental and Experimental Botany, 66(3), 418-424.
  9. Feizi, M., Hajabassi, M. A. & Mostafazadeh-Fard, B. (2010). Saline irrigation water management strategies for better yield of safflower (Carthamus tinctorius L.) in an arid region. Astralian Journal of Crop Science, 4(6), 408-414.
  10. Gomes, M. D. M. A., Campostrini, E., Leal, N. R., Viana, A. P., Ferraz, T. M., do Nascimento Siqueira, L. & Zullo, M. A. T. (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis). Scientia Horticulturae, 110(3), 235-240.
  11. Jamalian, S., Tehranifar, A. Tafazoli, E. Eshghi, S. & Davarynejad, Gh.H.  (2008). Paclobutrazol application ameliorates the negative effect of salt stress on reproductive growth, yield, and fruit quality of strawberry plants. Horticulture, Environment, and Biotechnology, 49(4), 1-6.
  12. Jamali, B., Eshghi, S. & Kholdebarin, B. (2014). Response of strawberry 'Selva' plants on foliar application of sodium nitroprusside (nitric oxide donor) under saline conditions. Journal of Horticultural Research, 22 (2), 139-150.
  13. Karlidag, H., Yildirim, E. & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria× ananassa). Scientia Horticulturae, 130(1), 133-140.
  14. Kaya, C., H. Kirnak, D. Higgs & Saltati, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93(1), 65-74.
  15. Keutgen, A. J. & Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and experimental botany, 65(2), 170-176.
  16. Keutgen, A. & Pawelzik, E. (2007). Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chemistry, 105(4), 1487-1494.
  17. Mohammadrezakhani, S., Pakkish, Z. & Rafeii, S. (2016). Role of brassinosteroid on qualitative characteristics improvement of strawberry fruit cv. ʻParosʼ. Journal of Horticulture Science, 30(2), 316-326. (in Farsi)
  18. Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H. & Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentumJournal of Plant Growth Regulation, 27(1), 49-57.
  19. Orsini, F., Alnayef, M., Bona, S., Maggio, A. & Gianquinto, G. (2012). Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany, 81, 1-10.
  20. Pereira-Netto, A. B., Cruz-Silva, C. T. A., Schaefer, S., Ramírez, J. A. & Galagovsky, L. R. (2006). Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees, 20(3), 286-291.
  21. Roghabadi, A. R. & Pakkish, Z. (2014). Role of brassinosteroid on yield, fruit quality and postharvest storage of ‘Tak Danehe Mashhad’ sweet cherry (Prunus avium L.). Agricultural Communications, 2(4), 49-56.
  22. Saadati, S. & Moallemi, N. (2011). A study of the effect of zinc foliar application on growth and yield of strawberry plant under saline conditions. Iranian Journal of Horticultural Science, 42(3), 267-275. (in Farsi)
  23. Saied, A. S., Keutgen, A. J. & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’and ‘Korona’. Scientia Horticulturae, 103(3), 289-303.
  24. Samira, I. M. H., Bouthaina, D. M., Samia, B. M. G. & Mounir, D. (2012). 24-Epibrassinolide ameliorates the adverse effect of salt stress (NaCl) on pepper (Capsicum annuum L.). Journal of Stress Physiology & Biochemistry, 8(1), 229-238.
  25. Sun, Y., Niu, G., Wallace, R., Masabni, J. & Gu, M. (2015). Relative salt tolerance of seven strawberry cultivars. Horticulturae, 1(1), 27-43.
  26. Vardhini, B. V., Anuradha, S. & Rao, S. S. R. (2006). Brassinosteroids-New class of plant hormone with potential to improve crop productivity. Indian Journal of Plant Physiology, 11(1), 1-9.