Influence of UV-C irradiation on some phytochemicals and antioxidant activities in ‘Sultana’ table grape skin

Document Type : Full Paper


1 Ph. D. Candidate, Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 Professor, Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran


The effect of UV-C irradiation, either alone or in combination with other treatments, on the biosynthesis of secondary compounds in plants has been recently become a matter of interest. In this study, the influence of UV-C light on some phytochemical traits and activity of enzymes involved in phenolic metabolism in grape was investigated. At first, the berries of table grape cv. Sultana were subjected to UV-C irradiation in different doses of 0 (control), 0.8, 1.2, and 4.2 kJm-2, then they were kept at 15°C for 6 days. UV-C low doses induced total phenol in the berry skin. The lowest flavonoid content was observed in berries subjected to the highest dose of UV-C (4.2 kJm-2) on the first day, whereas those irradiated by the low dose of UV-C (0.8 kJm-2) had the most flavonoid content after 5 days (0.45 mg Rutin/g FW). Also, UV-C application improved antioxidant capacity of treated samples in comparison with control. It should be noted that UV-C irradiation had no effect on total tannin content of the berry skin. However, the effect of UV-C radiation on phenylalanine amonialyase (PAL) activity was remarkable during storage. The UV-C restricted the POD activity up to the middle of storage. However, in terms of polyphenol oxidase (PPO), this behavior was dosage-dependent. The results showed that UV-C application at the low doses is an appropriate way to increase phenolic content and antioxidant capacity of table grapes cv. Sultana during limited storage time.


Main Subjects

  1. Baiano, A. & Terracone, C. (2011). Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics. Journal of Agricultural and Food Chemistryistry, 59(18), 9815-9826.
  2. Ben-Yehoshua, S., Rodov, V., Kim, J. J. & Carmeli, S. (1992). Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. Journal of Agricultural and Food Chemistryistry, 40(7), 1217-1221.
  3. Benzie, I. F. & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  4. Bertelli, D., Maietti, A., Papotti, G., Tedeschi, P., Bonetti, G., Graziosi, R., Brandolini, V. & Plessi, M. (2015). Antioxidant activity, phenolic compounds, and NMR characterization of balsamic and traditional balsamic vinegar of Modena. Food Analytical Methods, 8(2), 371-379.
  5. Bintsis, T., Litopoulou‐Tzanetaki, E. & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry-a critical review. Journal of the Science of Food and Agriculture, 80(6), 637-645.
  6. Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I. & Periago, M. J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49(1), 296-302.
  7. Caldwell, M., Searles, P., Flint, S. & Barnes, P. (1999). Terrestrial ecosystem responses to solar UV-B radiation mediated by vegetation, microbes and abiotic photochemistry. Physiological Plant Ecology, 39th Symposium on the British Ecological Society, pp. 241-262.
  8. Cantos, E., Espín, J. C., Fernández, M. J., Oliva, J. & Tomás-Barberán, F. A. (2003). Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. Journal of Agricultural and Food Chemistryistry, 51(5), 1208-1214.
  9. Cantos, E., Espín, J. C. & Tomás-Barberán, F. A. (2001). Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: A new “functional” fruit? Journal of Agricultural and Food Chemistryistry, 49(10), 5052-5058.
  10. Cantos, E., García-Viguera, C., de Pascual-Teresa, S. & Tomás-Barberán, F. A. (2000). Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. Journal of Agricultural and Food Chemistryistry, 48(10), 4606-4612.
  11. Chen, C., Hu, W., He, Y., Jiang, A. & Zhang, R. (2016). Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology, 111, 126-131.
  12. Christopoulos, M. V. & Tsantili, E. (2015). Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biology and Technology, 104, 17-25.
  13. Crozier, A., Jaganath, I. B. & Clifford, M. N. (2009). Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 26(8), 1001-1043.
  14. Crupi, P., Pichierri, A., Basile, T. & Antonacci, D. (2013). Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chemistry, 141(2), 802-808.
  15. Crupi, P., Pichierri, A., Milella, R. A., Perniola, R. & Antonacci, D. (2014). Role of the physical elicitors in enhancing postharvest antioxidant capacity of table grape cv. redglobe (Vitis vinifera L.). Journal of Food Research, 3(2), 61.
  16. D'hallewin, G., Schirra, M., Pala, M. & Ben-Yehoshua, S. (2000). Ultraviolet C irradiation at 0.5 kJ m-2 reduces decay without causing damage or affecting postharvest quality of ‘Star Ruby’ grapefruit (C. paradisi Macf.). Journal of Agricultural and Food Chemistryistry, 48(10), 4571-4575.
  17. Dawar, S., Vani, T. & Singhal, G. (1998). Stimulation of antioxidant enzymes and lipid peroxidation by UV-B irradiation in thylakoid membranes of wheat. Biologia Plantarum, 41(1), 65-73.
  18. de Pascual-Teresa, S., Moreno, D. A. & García-Viguera, C. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11(4), 1679-1703.
  19. Dixon, R. A. & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7), 1085.
  20. Dokoozlian, N. (2000). Plant growth regulator use for table grape production in California. In: Proceeding of 4th International Symposium on Table Grape, 28 Nov. -1 Dec., La Serena, Chile pp. 122-136.
  21. Donsì, F., Marchese, E., Maresca, P., Pataro, G., Vu, K.D., Salmieri, S., Lacroix, M. & Ferrari, G. (2015). Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology, 106, 21-32.
  22. Erkan, M., Wang, S. Y. & Wang, C. Y. (2008). Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biology and Technology, 48(2), 163-171.
  23. Galli, F., Archbold, D. D. & Pomper, K. W. (2009). Pawpaw fruit chilling injury and antioxidant protection. Journal of the American Society for Horticultural Science, 134(4), 466-471.
  24. Giménez, M. J., Serrano, M., Valverde, J. M., Martínez‐Romero, D., Castillo, S., Valero, D. & Guillén, F. (2017). Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. Journal of the Science of Food and Agriculture, 97(4), 1220-1228.
  25. Goetz, G., Fkyerat, A., Métais, N., Kunz, M., Tabacchi, R., Pezet, R. & Pont, V. (1999). Resistance factors to grey mould in grape berries: Identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry, 52(5), 759-767.
  26. González-Aguilar, G., Wang, C., Buta, J. & Krizek, D. (2001). Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe ‘Tommy Atkins’ mangoes. International Journal of Food Science & Technology, 36(7), 767-773.
  27. Gonzalez-Aguilar, G., Wang, C. Y. & Buta, G. J. (2004). UV-C irradiation reduces breakdown and chilling injury of peaches during cold storage. Journal of the Science of Food and Agriculture, 84(5), 415-422.
  28. González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M., Gardea, A. & Ayala-Zavala, J. F. (2007). Improving Antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), S197-S202.
  29. Guan, W., Fan, X. & Yan, R. (2012). Effects of UV-C treatment on inactivation of Escherichia coli O157: H7, microbial loads, and quality of button mushrooms. Postharvest Biology and Technology, 64(1), 119-125.
  30. Guerrero, R. F., Cantos-Villar, E., Fernández-Marín, M. I., Puertas, B. & Serrano-Albarrán, M. J. (2015). Optimising UV-C preharvest light for stilbene synthesis stimulation in table grape: Applications. Innovative Food Science & Emerging Technologies, 29, 222-229.
  31. Harborne, J. & Williams, C. (2000). Advances in flavonoid research since 1992. Phytochemistry 55, 481-504.
  32. Haslam, E., Lilley, T. H. & Butler, L. G. (1988). Natural astringency in foodstuffs-A molecular interpretation. Critical Reviews in Food Science & Nutrition, 27(1), 1-40.
  33. Hideg, É. & Vass, I. (1996). UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Science, 115(2), 251-260.
  34. Higashio, H., Hirokane, H., Sato, F., Tokuda, S. & Uragami, A. (2005). Effect of UV irradiation after the harvest on the content of flavonoid in vegetables. Acta Horticultures, 682, 1007-1012.
  35. Hoque, E. & Remus, G. (1999). Natural UV-screening mechanisms of Norway spruce (Picea abies [L.] Karst.) needls. Photochem Photobiology, 69(2), 177-192.
  36. Jagadeesh, S., Charles, M., Gariepy, Y., Goyette, B., Raghavan, G. & Vigneault, C. (2011). Influence of postharvest UV-C hormesis on the bioactive components of tomato during post-treatment handling. Food and Bioprocess Technology, 4(8), 1463-1472.
  37. Jenkins, G. I. (2009). Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 60, 407-431.
  38. Landry, L. G., Chapple, C. C. & Last, R. L. (1995). Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology, 109(4), 1159-1166.
  39. Leifert, W. R. & Abeywardena, M. Y. (2008). Cardioprotective actions of grape polyphenols. Nutrition Research, 28(11), 729-737.
  40. Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T. & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56-62.
  41. Li, L., Li, J., Sun, J., Li, C., Sheng, J., Zheng, F., Liao, F., He, X., Liu, G., Ling, D. & You, X. (2015). Effects of 2-butanol on quality and physiological characteristics of longan fruit stored at ambient temperature. Postharvest Biology and Technology, 101, 96-102.
  42. Liu, C.H., Cai, L.Y., Lu, X.Y., Han, X.X. & Ying, T.J. (2012). Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. Journal of Integrative Agriculture, 11(1), 159-165.
  43. Liu, L., Zabaras, D., Bennett, L., Aguas, P. & Woonton, B. (2009). Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chemistry, 115(2), 495-500.
  44. Manzocco, L., Quarta, B. & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science & Emerging Technologies, 10(4), 506-511.
  45. Meng, D., Song, T., Shen, L., Zhang, X. & Sheng, J. (2012). Postharvest application of methyl jasmonate for improving quality retention of Agaricus bisporus fruit bodies. Journal of Agricultural and Food Chemistryistry, 60(23), 6056-6062.
  46. Moreno, C., Andrade-Cuvi, M. J., Zaro, M. J., Darre, M., Vicente, A. R. & Concellón, A. (2017). Short UV-C Treatment prevents browning and extends the shelf-life of fresh-cut carambola. Journal of Food Quality, 1-9.
  47. Nelson, K. E. (1979). Harvesting and Handling California Table Grapes for Market (Vol. 1913). UCANR Publications.
  48. Noble, A. (1994). Bitterness in wine. Physiology & Behavior, 56(6), 1251-1255.
  49. WHO (World Health Organization). (2014). Ultraviolet radiation and the INTERSUN Programme. Sun protection: Simple precautions in the sun.
  50. Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G. & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103-111.
  51. Perkins-Veazie, P., Collins, J. K. & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280-285.
  52. Pezzuto, J. M. (2008). Grapes and human health: A perspective. Journal of Agricultural and Food Chemistryistry, 56(16), 6777-6784.
  53. Pina, A. & Errea, P. (2008). Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. Journal of Plant Physiology, 165(7), 705-714.
  54. Pinto, E. P., Perin, E. C., Schott, I. B., da Silva Rodrigues, R., Lucchetta, L., Manfroi, V. & Rombaldi, C. V. (2016). The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv. Concord). Postharvest Biology and Technology, 120, 84-91.
  55. Pluskota, W. E., Michalczyk, D. J. & Górecki, R. J. (2005). Control of phenylalanine ammonia-lyase gene promoters from pea by UV radiation. Acta Physiologiae Plantarum, 27(2), 229-236.
  56. Pombo, M. A., Rosli, H. G., Martínez, G. A. & Civello, P. M. (2011). UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa, Duch.). Postharvest Biology and Technology, 59(1), 94-102.
  57. Portu, J., López, R., Baroja, E., Santamaría, P. & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221.
  58. Ribeiro, C. & Alvarenga, B. (2012). Prospects of UV radiation for application in postharvest technology. Emirates Journal of Food and Agriculture, 24(6), 586-597.
  59. Richard-Forget, F. C. & Gauillard, F. A. (1997). Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (Pyrus communis cv. Williams) polyphenol oxidase and peroxidase: A possible involvement of peroxidase in enzymatic browning. Journal of Agricultural and Food Chemistryistry, 45(7), 2472-2476.
  60. Rodov, V., Ben-Yehoshua, S., Kim, J. J., Shapiro, B. & Ittah, Y. (1992). Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. Journal of the American Society for Horticultural Science, 117(5), 788-792.
  61. Ruelas, C., Tiznado-Hernández, M., Sánchez‐Estrada, A., Robles-Burgueño, M. & Troncoso-Rojas, R. (2006). Changes in phenolic acid content during Alternaria alternata infection in tomato fruit. Journal of Phytopathology, 154(4), 236-244.
  62. Sarni-Manchado, P., Cheynier, V. & Moutounet, M. (1999). Interactions of grape seed tannins with salivary proteins. Journal of Agricultural and Food Chemistryistry, 47(1), 42-47.
  63. Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611.
  64. Slinkard, K. & Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  65. Song, J., Smart, R., Wang, H., Dambergs, B., Sparrow, A. & Qian, M. C. (2015). Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot Noir wine. Food Chemistry, 173, 424-431.
  66. Szymanowska, U., Zlotek, U., Karas, M. & Baraniak, B. (2015). Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors. Food Chemistry, 172, 71-77.
  67. Taira, S., Ono, M. & Matsumoto, N. (1997). Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biology and Technology, 12(3), 265-271.
  68. Teoh, L. S., Lasekan, O., Adzahan, N. M. & Hashim, N. (2016). The effect of combinations of UV-C exposure with ascorbate and calcium chloride dips on the enzymatic activities and total phenolic content of minimally processed yam slices. Postharvest Biology and Technology, 120, 138-144.
  69. Tomás‐Barberán, F. A. & Espin, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876.
  70. Urban, L., Charles, F., de Miranda, M. R. & Aarrouf, J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiology and Biochemistry, 105, 1-11.
  71. Vámos‐Vigyázó, L. & Haard, N. F. (1981). Polyphenol oxidases and peroxidases in fruits and vegetables. Critical Reviews in Food Science & Nutrition, 15(1), 49-127.
  72. Wang, C. Y., Chen, C. T. & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426-431.
  73. Yoo, K. M., Lee, C. H., Lee, H., Moon, B. & Lee, C. Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food Chemistry, 106(3), 929-936.
  74. Zhao, J., Davis, L. C. & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283-333.
  75. Zhu, Y., Yu, J., Brecht, J. K., Jiang, T. & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 537-543.
  76. Zoffoli, J. & Latorre, B. (2011). Table grape (Vitis vinifera L.). In: E. Yahia (Ed), Postharvest Biology and Technology of Tropical and Subtropical Fruits: Cocona to Mango (pp.179-214). Elsevier.