Effect of silicon and salicylic acid on lignin formation and antioxidant enzymes in gerbera flower

Document Type : Full Paper


1 Former Ph.D. Student, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Ornamental Plants Research Center, Iranian Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mahallat, Iran

3 Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran


The quality and vase-life of cut flowers are highly dependent on stability of stems and antioxidant potential. This experiment was conducted as two factorial experiments in a randomized complete block design to study the effect of silicon fertilization and salicylic acid on quality of the gerbera(Gerbera jamesonii Bolus.) cut flowers in soilless culture and postharvest activity of antioxidant enzymes. First experiment was foliar application of 0, 10 and 20 mM of silicon as potassium silicate and 0, 100 and 200 mM of salicylic acid (SA) before harvest. In the second experiment pre-harvest silicon supplementations were similar to the first experiment and post-harvest treatments with 0, 200, 400 µM of salicylic acid were done. Flower stems length in winter and spring seasons, decreased by silicon nutrition (P≤0.05), but number of flowers increased by silicon supplementation (p≤0.001) and salicylic acid foliar application (p≤0.05). SA treatments increased lignin biosynthesis (p≤0.001). Silicon supplementation increased the vase life of cut flowers (p≤0.001), but activity of catalase and peroxidase were increased as affected by postharvest SA treatments (p≤0.001). These results suggest that silicon and salicylic acid applications could improve the quality and vase life of cut flowers in gerbera.


Main Subjects

  1. Alaey, M., Babalar, M., Naderi, R. & Kafi, M. (2011). Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94. ‏
  2. Al-aghabary, K., Zhu, Z. & Shi, Q. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of plant nutrition, 27(12), 2101-2115.
  3. Arora, A., Sairam, R. K. & Srivastava, G. C. (2002). Oxidative stress and anti-oxidative system in plants. Current Science Bangalore, 82(10), 1227-1238.
  4. Azadi, P. & Ploeg, R. V. (2016). Will Iran bloom into its full potential? Floraculture, 26(09).
  5. Barakatain, L., Nikbakht, A., Etemadi, N. & Ali, J. K. (2013). Effect of source and method of silica application on some of the quantitative and physiological characteristics of Gerbera jamesonii L. Journal of Science and Technology of Greenhouse Culture, 4(13), 39-47. (in Farsi)
  6. Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1), 276-287.
  7. Broadley, M., Brown, P., Cakmak, I., Ma, J. F., Rengel, Z. & Zhao, F. (2012). Beneficial Elements. In: P. Marschner (Ed), Marschner’s Mineral Nutrition of Higher Plants (3d Ed.) (pp 249-269). Elsevier Ltd.
  8. CBI Trade Statistics (2016). Cut Flowers and Foliage. CBI Market Intelligence. The Netherlands.
  9. Chance, B. & Maehly, A. C. (1957). Assay of catalases and peroxidases. Methods in enzymology, 2, 764-775.
  10. Cooke, J. & Leishman, M. R. (2011) Is plant ecology more siliceous than we realise? Trends in Plant Sciences, 16(2), 61-68.
  11. Dong, J., Wan, G. & Liang, Z. (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148(2), 99-104.‏
  12. Dragišić Maksimović, J., Bogdanović, J., Maksimović, V. & Nikolic, M. (2007). Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. Journal of Plant Nutrition and Soil Science170(6), 739-744.
  13. Epstein, E. (1994). The anomaly of silicon in plant biology. In: Proceedings of the National Academy of Sciences. U.S.A, 91, 11-17.
  14. Ferrante, A., Alberici, A., Antonacci, S. & Serra, G. (2007). Effect of promoter and inhibitors of phenylalanine ammonia lyase enzyme on stem bending of cut gerbera flowers. Acta Horticulture, 755, 471-476.
  15. Ferreira, L. C., Cataneo, A. C., Remaeh, L. M. R., Corniani, N., de Fátima Fumis, T., de Souza, Y. A., Scavroni, J. & Soares, B. J. A. (2010). Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pesticide Biochemistry and Physiology, 97(1), 47-54.
  16. Gallego-Giraldo, L., Escamilla-Trevino, L., Jackson, L.A. & Dixon, R.A. (2011). Salicylic acid mediates the reduced growth of lignin down-regulated plants. In: Proceedings of the National Academy of Sciences USA, 108, 20814-20819.
  17. Gerailoo, S. & Ghasemnezhad, M. (2011). Effect of salicylic acid on antioxidant enzyme activity and petal senescence in ‘Yellow Island’ cut rose flowers. Journal of Fruit and Ornamental Plant Research, 19, 183-193.
  18. Guo, Y., Liu, L., Zhao, J. & Bi, Y. (2007). Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.). International Journal of Food Science & Technology, 42(8), 1012-1018. ‏
  19. Haghani, M., Nikbakht, A., Ping Xia, Y. & Pessarakli, M. (2014). Influence of Humic Acid in Diluted Nutrient Solution on Growth, Nutrient Efficiency, and Postharvest Attributes of Gerbera. Communications in Soil Science and Plant Analysis, 45, 177-188.
  20. Hajizadeh, H. S. & Aliloo, A. (2013). The Effectiveness of Pre-Harvest Salicylic Acid Application on Physiological Traits in Lilium (Lilium longiflorum L.) Cut Flower. International Journal of Scientific Research in Environmental Sciences, 1(12), 344.
  21. He, C., Wang, L., Liu, J., Liu, X., Li, X., Ma, J., Lin, Y. & Xu, F. (2013). Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytologist, 200, 700-709.
  22. Kamenidou, S., Cavins, T. J. & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 119(3), 297-301.
  23. Kazemi, M., Gholami, M., Asadi, M. & Aghdasi, S. (2012). Efficiency of Silicon, Nickel and Acetylsalicylic Acid Reduced Senescence and Extended Vase Life of Cut Rose Flowers. Trends in Applied Sciences Research, 7, 590-595.
  24. Leatherwood, R. & Mattson, N. (2010).  Adding Silicon to the Fertilizer Program in Poinsettia Production: Benefits and Facts. Cornell University, Cooperative Extension.
  25. Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209(2), 217-224.
  26. Liang, Y., Chen, Q. I. N., Liu, Q., Zhang, W. & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of plant physiology, 160(10), 1157-1164.
  27. Liang, Y., Zhang, W., Chen, Q. & Ding, R. (2005a). Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53(1), 29-37.
  28.  Liang, Y. C., Sun, W. C., Si, J. & Römheld, V. (2005b). Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 54(5), 678-685.
  29. Liang, Y., Zhang, W., Chen, Q., Liu, Y. & Ding, R. (2006). Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 57(3), 212-219.
  30. Ma, J. F. (2004) Role of silicon in enhancing the resistance of plant to biotic and abiotic stress. Soil Science and Plant Nutrition, 50(1), 11-18.
  31. Ma, J. F., Miyake, Y. & Takahashi, E. (2001). Silicon as a beneficial element for crop plants. In: L.E. Datnoff G.H. Snyder & G.H. KorndOrfer (Eds) Silicon in Agriculture. (Pp17-39). Elsevier.
  32. Ma, J. F. & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research inJapan. Elsevier Pub, Amsterdam.
  33. ‏Moyer, C., Peres, N. A., Datnoff, L. E., Simonne, E. H. & Deng, Z. (2008). Evaluation of Silicon for Managing Powdery Mildew on Gerbera Daisy. Journal of Plant Nutrition, 31(12), 2131-2144.
  34. Nazari delju, M. J., Khalighi, A., Arab, M., Karamian, R. & Jaberian, H. H. (2015). Effect of postharvest pulse treatment of salicylic acid on phenylalanine ammonia-lyase activity (PAL), lignin formation and stem bending disorder of gerbera cut flowers. Iranian Journal of Horticultural Science, 46(2), 279-290. (in Farsi)
  35. Osborne, D. J. & McManus, M. T. (2005). Hormones, signals and target cells in plant development (Vol. 41). Cambridge University Press.
  36. Panavas, T. & Rubinstein, B. (1998). Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Science, 133, 125-138.
  37. Perik, R. R., Razé D., Harkema, H., Zhong, Y. & Van Doorn, W. G. (2012). Bending in cut Gerbera jamesonii flowers relates to adverse water relations and lack of stem sclerenchyma development, not to expansion of the stem central cavity or stem elongation. Postharvest Biology and Technology, 74, 11-18.‏
  38. Prochazkova, D., Sairam, R. K., Srivastava, G. C. & Singh, D. V. (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161(4), 765-771.
  39. Reezi, S. (2010). Effects of silicon and salicylic acid on quality of cut roses and powdery mildew disease in hydroponic system. Ph. D. Thesis. College of Agriculture and Natural Resources. University of Tehran. Iran. (in Farsi)
  40. Ritcher, M. (2001). Silicon fertilization and vase life of gerbera. Das Magazin fur Zierpflanzenbau, 22, 42-44.
  41. Rogers, L. A., Dubos, C., Surman, C., Willment, J., Cullis, I. F., Mansfield, S. D. & Campbell, M. M. (2005). Comparison of lignin deposition in three ectopic lignification mutants. New Phytologist, 168(1), 123-140.
  42. Romero-Aranda, M.R., Jurado, O. & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163, 847- 855.
  43. Sahebi, M., Hanafi, M. M. & Azizi, P. (2016). Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology, 1-7. ‏
  44. Savvas, D., Manos, G., Kotsiras, A. & Souvaliotis, S. (2002). Effects of silicon and nutrient-induced salinity on yield, flower quality and nutrient uptake of gerbera grown in a closed hydroponic system. Journal of Applied Botany, 76, 153-158.
  45. Savvas, D., Gizas, G., Karras, G., Lydakis-Simantiris, N., Salahas, G., Papadimitriou, M. & Tsouka, N. (2007). Interactions between Silicon and NaCl-Salinity in a Soilless Culture of Roses in Greenhouse. European Journal of Horticultural Science, 72(2), 73-79.
  46. Sivanesan, I., Sook Son, M., Yeon Song, J. & Ryong Jeong, B. (2013). Silicon Supply through the Subirrigation System Affects Growth of Three Chrysanthemum Cultivars. Horticulture & Environment Biotechnology, 54(1), 14-19.
  47. Van Doorn, W. G. (2012). Water relations of cut flowers: an update. Horticultural Reviews, 40, 55-106.
  48. Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant physiology, 153(3), 895-905.
    1. Vulavala, V. K., Elbaum, R., Yermiyahu, U., Fogelman, E., Kumar, A. & Ginzberg, I. (2016). Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta, 243(1), 217-229.
    2. Wang, W., Chen, W., Luo, H., Jiang, L. & Yu, Z. (2016). Effect of Salicylic Acid on Lignification of Fresh-cut Zizania Latifolia and the Possible Biochemical Mechanisms.‏ Journal of Food Engineering and Technology, 5(2), 1-7.
    3. Yamamoto, T., Nakamura, A., Iwai, H., Ishii, T., Ma, J. F., Yokoyama, R., Nishitani, K., Satoh, S. & Furukawa, J. (2012). Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. Journal of Plant Research, 125(6), 771-9.
  49. Yildirim, E., Turan, M. & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593-612.
  50. Zhang, J., Zou, W., Li, Y., Feng, Y., Zhang, H., Wu, Z. Tu, Y. Wang, Y. Cai, X. & Peng, L. (2015). Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science, 239, 84-91.‏
  51. Zhao, D., Hao, Z., Tao, J. & Han, C. (2013). Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.). Scientia Horticulturae, 151, 165-172.
  52. Zhu, Y. & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for sustainable development, 34(2), 455-472.
  53. Zhu, Z., Wei, G., Li, J., Qian, Q. & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533.