Impacts of preharvest sprays of fulvic acid on some quality and antioxidant properties of grapes the Fakhry Cultivar (Vitis vinifera cv Fakhri)

Document Type : Full Paper


1 Former M. Sc. Student, of Agriculture, University of Zanjan, Zanjan, Iran

2 Associate Professor , Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Assistant Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran


The excessive use of chemical fertilizers has caused a lot of environmental problems, so the use of organic and humic compounds, especially fulvic acid, has been considered in the production of horticultural crops. This research was carried out to evaluate the effect of foliar application of fulvic acid on quality and antioxidant properties of grapevine cv. Fakhri at four levels (0, 2.5, 5 and 10 g/l) using a randomized complete block design with three replications. Grapes were cultivated in a traditional traning system. The vines were sprayed at three stages: 1- Berry formation, 2- Lag phase, 3- Veraison. After harvesting, (Brix 20) qualitative and antioxidant properties of fruits were evaluated. Results of the experiment showed that 2.5 g/l of fulvic acid significantly increased soluble solids, vitamin C, soluble sugars, total phenol, antioxidant capacity of fruits, chlorophyll and leaf potassium content while 10 g/l of fulvic acid increased only titratable acidity of fruits. With increasing fulvic acid concentration evaluated traits decreased, so that 10 g/l fulvic acid did not show significant effect on improving qualitative and antioxidant properties of fruits. Application of fulvic acid did not show significant effect on fruit flavonoid, and carotenoid, phosphorus and nitrogen contents of leaves. As final result, fulvic acid treatment had an important effect on improving the qualitative and antioxidant properties of Fakhri cultivar and 2.5 g/l had the highest effect which is recommended to be considered as a best concentration.


Main Subjects

  1. Aberoumand, A. & Deokule, S. S. (2008(. Comparsion of phenolic compounds of some edible plants of Iran and India. Pakistan Journal of Nutrition, 7(4), 582-585.
  2. Abul, B., Giasuddin, A. M., Kanel, S. & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.Environmental Science and Technology, 41(6), 2022-2027.
  3. Aghdam, M. S., Asghari, M., Farmani, B., Mohayeji, M. & Moradbeygi, H. (2012). Impact of postharvest brassinosteroids treatment on PAL­ activity in tomato fruit in response to chilling stress. Scientia Horticulturae, 144, 116-120.
  4. Aiken, G. R., McKnight, D. M. & Carthy, P. (1985). Humic substances of soil, sediment and water. New York: Wiley-Interscience
  5. Aminifard, M. H., Aroiee, H., Nemati, H., Azizi, M. & Hawa, Z. E. (2012). Fulvic acid affects pepper antioxidant activity and fruit quality. African Journal of Biotechnology, 11(68), 13179-13185.
  6. Anjum, S. A., Wang, L., Farooq, M., Xue, L. & Ali, S. (2011). Fulvic acid application improves the maize performance under well-watered and drought conditions. Journal of Agronomy and Crop Science, 197(6), 409- 417
  7. Arndt, S. K. K., Clifford, S. C., Wanek, W., Jones, H. G. & Popp, M. (2001). Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiology, 21, 705-71
  8. Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Journal Agronomy, 23, 112-121.
  9. Asghari, M. R. & Ahadi, L. (2014). Effect of postharvest application of salicylic acid and aloe vera gel on qualitative characteristics and antioxidant activity of grape fruit of Ghezel Azum cultivar. Journal of Horticultural Science, (27), 349-342. (in Farsi)
  10. Bahrami, S., Soleimani, A. & Habibi, F. (2015). The effect of humic acid on the mineral composition leaves, yield and fruit quality apple (Malus domestica L. cv.Granny Smith). Journal of Crops, 17(2), 529-517. (in Farsi)
  11. Benvenuti, S., Pellati, M., Melegari, F. & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid and radical scavenging activity of Rubus, Ribes, and Aronia, Journal of Food Science, 69, 164-169.
  12. Cimrin, K. M., Turkmen, O., Turan, M. & Tuncer, B. (2010). Phosphorus and humic acid application 594 alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 9(36), 5845-5851.
  13. Clapp, C. E., Liu, R., Cline, V. W., Chen, Y. & Hayes, M. H. B. (1998). Humic substance for enhancing turfgrass growth. pp: 227-234.
  14. Connell, S., Rivard, C., Peet, M., Harlow, C. & Louws, F. (2012). High tunnel and field production of organic Heirloom tomatoes: yield, fruit quality, disease, and microclimate. Horticulture Science, 47, 1283-1290.
  15. Cordeiro, F. C., Santa-Catarina, C., Silveira, V. & Souza, S. R. (2011). Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays L.). Biosci Biotech. 404 Biochemistry, 75 1, 70-4.
  16. Crisosto, C. H. (2008). Central valley postharvest. Cooperative Extension University of California Kearney Agricultural Center. Vol. 17, 2
  17. Dehgan, G. & Khoshkam, Z. (2012). Tin (ll)-quercetin complex: Synthesis, spectral characterization and antioxidant activity. Food Chemistry, 131, 422-426.
  18. Desouky, I. M., Haggag, L. F., El-Migeed, M., Kishk, Y. F. & El-Hadi, E. S. (2009). Effect of boron and calcium nutrients sprays on fruit set, oil content and oil quality of some olive oil cultivars. Agriculture Sciences, 5, 180-185.
  19. Dogan, E. & Demir, K. (2004). Determinations of yield and fruit characteristics of tomato crop grow in humic acids-added aggregate culture in greenhouse conditions. Plant Physiology, 84, 218-224.
  20. El- Kadam, M. A. (2017). Effect of Chitosan, Salicylic Acid and Fulvic Acid on Vegetative Growth, Yield and Fruit Quality of Thompson Seedless Grapevines. Egyptian Journal Horticulture, 44(1), 45-59.
  21. Elham, A. G. & Geoffrey, D. (2009). Spectrophotometric analysis of fulvic acid solutions a second look. Annals of Environmental Science, 3, 131-138.
  22. Emami A. (1996). Plant decomposition methods. Soil &Water Research lnstitute. Tehran Iran. 1, 128
  23. Ervin, E. H. & Zhang, X. (2004). Cytokinon-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 44(5), 1737-1745.
  24. Eshghi, S. & Garazhian, M. (2015). Improving growth, yield and fruit quality of strawberry by foliar and soil and soil drench applications of humic acid. Iran Agricultural Research, 34(1), 14-20. (in Farsi) 
  25. Ferreira, A. S., Nunes, C., Castro, A., Ferreira, P. & Coimbra, M. A. (2014). Influence of grape pomace extract incorporation on chitosan properties. Carbohydrate Polymers, 113, 490-499.
  26. Food and Agriculture Organization. (2016). FAOSTAT, FAO March 21, 2018 Statiscal Databases.
  27. Ghosh, I., Das, D. K. & Da, S. K. (2012). Sanya Evaluation of humic and fulvic acid extracts of compost, oilcake, and soils on complex formation with arsenic; Soil Research, 50, 239-248.
  28. Gomes de Melo, B. A., Lopes Motta, F. & Santana, M. H. A. (2015). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering, 59-94.
  29. Haghighi, M., Kafi, M. & Fang, P. (2012). Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Vegetable Science, 18, 182-18.
  30. Hernandez, O. L., Garcia, A. C., Huelva, R., Martinez-Balmori, D., Guridi, F., Aguiar, N. O., Olivares, F. L. & Canellas, L. P. (2015). Humic substance from vermicompost urban lettuce production. Agronomy for Sustainable Development, (35), 225-232.
  31. Huang, X. G., Wang, Q. & Zhao, T. C. (2000). Effect of potassium fertilizers for improving quality and production of fruit crop. Journal of Fruit Science, 17, 309-313.
  32. Husein, M. E., Abou El Hassan, S. & Shahein, M. M. (2015). Effect of humic, Fulvic acid and calcium foliar application on growth and yield of tomato plants. International Journal of Biosciences, 7, 132-140.
  33. Irigoyen, J. J., Emerch, D. W. & Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plant. Physiologia Plantarum, 84, 55-60.
  34. Jalili Marandi, R. (2007). Small fruits. Urmia University press PP: 170-180.
  35. Jalili Marandi, R. (2012). Postharvest physiology. Urmia University Press. pp: 551.
  36. Janick, J. & James, N. (1996). Fruit Breeding: Vine and small fruit crops. (V.2). pp: 471.
  37. Kadam, R. S., Amrutsagar, M. V. & Deshpande, N. A. (2010). Influence of organic nitrogen sources with fulvic acid spray on yield and nutrient uptake of soybean on inceptisol. Journal of Soils and Crops, 20(1), 58-63.
  38. Kaijv, M., Sheng, L. & Chao, C. (2006). Antioxidation of flavonoids of green rhizome. Journal Food Science, 27, 110-115.
  39. Kaldenhoff, R. & Fischer, M. (2006). Functional aquaporin diversity in plants. Biochemical Biophysical Acta, 1758, 1134-1141.
  40. Kashif, A., Maltese, F., Choi, Y. H. & Verpoorte, R. (2010). Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews, 9, 357-378.
  41. Khold-e-barin, B. & Islamzadeh, T. (2005). Mineral nutrition of higher plants. Shiraz University Press, PP: 495.
  42. Klein, B. P. & Perry, A. K. (1982). Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. Journal of Food Science, 47, 941-945.
  43. Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7(3), 235-246.
  44. Li, P., Zheng, X., Liu, Y. & Zhu, Y. (2014). Pre storage application of oxalic acid balleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress. Food Chemistry, 142, 72-78.
  45. Lichtenthder, H. K. (1987). Chlorophyllus & carotenoids: pigments of phorosynthetic biomembrances. Method in Enzymolody, 148, 350-382.
  46. Lopez, A. R. (1993). Humic acid effect on the stomata conductance and leaf abscission on apple cv. Golden Delicious under tropical conditions. Acta Horticulture, 329, 254-254.
  47. Luciano, P. & Canellasa-Fabio, L., Olivaresa-Natália, O., Aguiara-Davey, L., Jonesb, A., Nebbiosoc, P. & Mazzeic, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27.
  48. Maijedi, M. (1994). Methods of foods chemicals analysis. Jahad daneshgahi press. University of Tehran. (in Farsi)
  49. Massot, C., Genard, M., Stevens, R. & Gautier, H. (2010). Fluctuation in sugar contentare not determinant in explaining variations in vitamin c in tomato fruit. Plant Physiology Biochemcal, 48, 75-751.
  50. Muscolo, A., Sidar, M. & Nardi, S. (2013). Humic substance: Relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 129, 57-63.
  51. Nagy, S. (1980). Vitamin C contents of citrus fruit and their products: a review. Journal Agriculture Food Chemical, 28, 8-18.
  52. Nardi, S., Pizzeghello, D., Muscolo, A. & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology Biochemistry, 34, 1527-1536.
  53. Olivares, F. L., Aguiar, N. O., Rosa, R. C. & Canellas, L. P. (2015). Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae, 183, 100-108.
  54. Pizzeghello, D., Nicolini, G. & Nardi, S. (2001). Hormone-like activity of humic substances in Fagus sylvatica forests. New Phytology, 151, 647-657.
  55. Rana, J. & Paul, J. (2017). Consumer behavior and purchase intention for organic food: a review and research agenda. Journal of Retailing & Consumer Services, 38, 157-165.
  56. Riahi, A., Hdider, C., Sanaa, M., Tarchoun, N., Khedere, M. & Guezalf, I. (2009). Effect of conventional and organic production systems on the yield and quality of field tomato cultivars grown in Tunisia. Journal Science Food Agriculture, 89, 2275-2282.
  57. Rolland, F., Baena-Gonzalez, E. & Sheen, J. (2006). Sugar sensing and signaling in plants, conserved and novel mechanisms. Annual Review of Plant Biology, (57), 675-709.
  58. Samavati, S. & Melkotti, M. (2005). The necessity of producing organic acids humic and fulvic for quantitative and qualitative increase of agricultural products. Technical Journal of Soil & Water, 4631-13.
  59. Sanchez, S. A., Sanchez Andreu, J., Juarez, M., Jorda, J. & Bermudez, D. (2006(. Imporvement of iron uptake in table grape by addition of humic substancecs. Journal of Plant Nutrition, 29(2), 259-272
  60. Sarmadnia, G. H. & Koocheki, A. (2001). Crop physiology Jihad Daneshgahi Publication of scavenging activity of lignins-natural antioxidants. Bioresource Technology, 95, 309-317.
  61. Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. International Journal of Environmental Science & Development, 3, 1
  62. Sdiri, S., Bermejo, A., Aleza, P., Navarro, P. & Salvador, A. (2012). Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49, 462-468.
  63. Sebahattin, A. & Necdet, C. (2005). Effects of different levels and application times of humic acid on root and leaf yield and yield components of forage Turnip (Brassica rapa L.). Journal Agronomy, 4, 130-133.
  64. Simonne, E. H., Jones Jr, J. B., Mills, H. A., Smittle, D. A., & Hussey, C. G. (1993). Influence of catalyst, sample weight, and digestion conditions on Kjeldahl nitrogen. Communications in Soil Science and Plant Analysis, 24(13-14), 1609-1616.
  65. Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Enology and Viticulture, 16, 144-158.
  66. Sladky, Z., Tichy, V. (1959). Applications of humus substances to overground organs of plants. Biology Plant, 1, 9-15.
  67. Smirnoff, N. (2011). Vitamin C the metabolism functions of ascorbic acid in plants. Advances in Botanical Research, 59, 109-177.
  68. Smirnova, V., Efimova, I. V. & Khilko, S. L. (2012). Antioxidant and pro-oxidant activity of ascorbic and humic acids in radical-chain oxidation process. Russian Journal of Applied Chemistry, 85, 252-255.
  69. Syltic, P. W. (1985). Effects of very small amounts of highly active biological substances on plant growth. Biological Agriculture and Horticulture, 2, 245-269.
  70. Symonowicz, M. & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes Biotechnology & Food Sciences, 76, 35-41.
  71. Tabatabaei, S.  J. (2013). Principles of Mineral Naturition of plant. Tabriz University pp, 289.
  72. Tahir, M. M., Khurshid, M., Khan, M. Z., Abbasi, M. K. & Kazmi, H. M. (2011). Lignite derived humic acid effect on growth of wheat plants in different soils. Soil Science Society of China Pedosphere, 21, 124-131.
  73. Vaccaro, S., Ertani, A., Nebbioso, A., Muscolo, A., Quaggiotti, S., Piccolo, A. & Nardi, S. (2015). Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level. Chemical and Biological Technologies in Agriculture2(1), 5.
  74. Vaughan, D. & Linehan, D. J. (2004). The growth of wheat plants in humic acid solutions under axenic conditions. Plant and Soil, 44, 445-449.
  75. Vermerris, W. & Nicholson, R. (2007). Phenolic compound biochemistry. Springer, New York. pp: 1-32.
  76. Yildirim, E. (2007). Foliar and soil fertilization of humic acid affect productivity and quality of tomato.  Acta Agriculture Scandinavia, 57, 182-186.
  77. Zhang, H. & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti- Flammatory effects. Current opinion in Food Science, 8, 33-42.