Effect of Silicon nutrition on growth and physiology of spearmint (Mentha spicata L.) under Cadmium stress condition

Document Type : Full Paper

Authors

1 Former M. Sc. Student, Faculty of Agricultural Science , Mohaghegh Ardabili University, Iran

2 Associate Professor, Faculty of Agricultural Science , Mohaghegh Ardabili University, Iran

3 Ph.D. Candidate, Faculty of Agricultural Science, Mohaghegh Ardabili University, Iran

Abstract

Silicon (Si) is the second most abundant element in the earth crust. Silicon has been shown to ameliorate the adverse effects of heavy metals on plants. In order to investigate the effects of silicon nutrition on tolerance of mint (Mentha spicata L.) to cadmium stress, a factorial experiment based on Completely Randomizad Design was conducted in four replications in research greenhouse of Mohaghegh Ardabili University at 2014-2015. Experimental factors included soil contamination by cadmium (0, 50, 100 and 250 mg/kg soil) and silicon nutrition (0 and 1 mM). The number of pots was 32 also in each pot one spearmint stand were planted. During this experiment, traits such as: plant height, plant dry weight, root and stem dry weight, leaf and stem number, leaf area, chlorophylls index, electrolyte leakage, relative water contents, chlorophylls a, chlorophylls b, total chlorophylls,  enzyme activity of peroxidase, polyphenoloxidase, as well as proline, carbohydrates, caretenoids were measured. Results indicated the intractive effects of cd stress and si on plant height, leaf area, plant dry weight, stem dry weight, root wet weight, proline, activity of peroxidase, polyphenoloxidase, chlorophylls a, chlorophylls b, were significant. The highest value for carbohydrate, peroxidase, polyphenoloxidase, chlorophylls a, chlorophylls b, plant height, plant and stem dry weight, leaf area, root wet weight were obtained by foliar spraying of 1 mM concentration of silicon and without cd stress. In general, it can be concluded that foliar spraying of silicon is effective to increase total chlorophylls, plant dry weight, and stem dry weight under cd stress.

Keywords

Main Subjects


  1. Abdolzade, A. & Kiyani, Z. (2012). Silicon role in reducing the deficit and iron toxicity in rice plants in a hydroponic system. Journal of Science and Technology of greenhouse cultures, 3, 12. (in Farsi)
  2. Adriano, D. C. (2001). Trace Elements in Terrestrial Environments; Biochemistry, Bioavailability and Risks of Metals. Springer-Verlag. New York.
  3. Akbari mogadam, R. (2012). Dry matter partitioning and wheat varieties morphological reaction under drought conditions at different growth stages. Ph.D. thesis. Zabul Agriculture University. (in Farsi)
  4. Al-Aghabary, K., Zhu, Z. & Shi, Q. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101-2115.
  5. Ali khan, M. A. (2012). Effect of cadmium on growth and metabolism of phaseolus mungo. Journal of Environmental Biology, 33, 173-179.
  6. Ali, S., Farooq, M. A., Yasmeen, T., Hussain, S., Arif, M. S. & Abbas, F. (2013). The influence of silicon on barley growth, photosynthesis and ultra structure under chromium stress. Ecotoxicology and Environmental Safety, 89, 66-72.
  7. Aligadr, M., Hazrati, S. & ganbari, M. (2007). Measuring the concentration of heavy metals in drinking water sources in Ardabil. Environmental Health seminar. (in Farsi)
  8. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology, 24, 1-15. 
  9. Azevedo, R. & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition: Implications for the design of computer-based scaffolds. Instructional Science, 33, 367–379.
  10. Bahrampour, T., Fallah Nosrat Abad, A. R., Shiri, M. R. & Sarvi Moghanlo, V. (2013). Investigating heavy elements status (Cd, Ni and Pb) in soils of Moghan. Journal of Soil Management and Sustainable Production, 3, 243-249. (in Farsi)
  11. Balestrasse, K. B., Gardey, L., Gallego, S. M. & Tomaro, M. L. (2001). Response of tioxidant defence system in soybean nodules and roots subjected to cadmium stress. Australian Journal of Plant Physiology, 28, 497-504.
  12. Bates, L. S., Waldern, R. P. & Tear, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.  
  13. Behtash, F., Tabatabaii, S. J., Malakouty, M. J., Sorour-Aldin, M. H. & Ustan, Sh. (2011).  Effect of Cadmium and Silicon on Growth and Some Physiological Aspects of Red Beet. Sustainable Agriculture and Production Sciences, 20(2), 54-67.
  14. Bhardwaj, R., Arora, N., Sharma, P. & Arora, H. K. (2007). Effects of homobrassinolid on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays. Asian Journal of plant science. 6, 765- 772.
  15. Bohnert, H. J., Nelson, D. E. & Jensen, R. G. (1999). Adaptations to environmetal stresses. Plant Cell 7, 1099-1111.
  16. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochemistry, 72, 248-254.
  17. Chaffei, C., Gouia, H. & Ghorbe, l. M. (2003). Nitrogen Metabolism in Tomato Plants Under Cadmium. Stress. Journal of Plant Nutrition, 26, 1617-1634.
  18. Chance, B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods of Enzymology, 11, 764-755.
  19. Chen, H. M., Zheng, C. R., Tu, C. & Slen, Z. G. (2000). Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 41, 229-234.
  20. Cheng, S. F. & Huang, C. Y. (2006). Influence of cadmium on growth of root vegetables and accumulation of cadmium in the edible root. International Journal of Applied Science and Engineering Research, 43, 243-252.
  21. Cocker, K. M., Evans, D. E.  & Hodson, M. J. (1998). The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism. Plant Physiology, 104, 608-614.
  22. Da Cunha, K. P. V. & Do Nascimento, C.W.A. (2009). Silicon effects on metal tolerance and structural changes in maize Zea mays L. grown on cadmium and zinc enriched soil. Water and Air and Soil Pollution, 197, 323-330.
  23. Das, P., Samantaray, S. & Rout, G. R. (1997). Studies on cadmium toxicity in plants a review. Environmental Pollution. 98, 29-36.
  24. Datnoff, L. E., Snyder, G. H. & Korndorfer, G. H. (2001). Silicon in Agriculture. Elsevier Science Amesterdam. The Neatherlands, p, 403.
  25. Dudka, S., M. Piotrowska, H. Terelak. 1996. Transfer of cadmium, lead and zinc from industrially contaminated soil to crop plants: A field study. Environmental Pollution. 94, 181-188.
  26. Duffy, F. H., Shankardass, A., McAnulty, G. B. & Als, H. (2013). The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study. BMC medicine, 11(1), 175.
  27. Epstein, E. (2009). Silicon: its manifold roles in plants. Annuals of applied biology, 155, 155- 160.
  28. Farooq, M. A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K. & Iqbal, Z. (2013). Alleviation of cadmiumtoxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety, 96, 242-249.
  29. Feng, J., Shi, Q., Wang, X., Wei, M., Yang, F. & Xu, H. (2010). Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123(4), 521-530.
  30. Gao, X., Zou, C., Wang, L. & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29, 1637-1647.
  31. Gong, H., Zhu, X., Chen, K., Suomin, W. & Zhang, C. H. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313-321.
  32. Gouia, H., Ghorbal, M. H. & Meyer, C. (2001). Effect of cadmium on activity of nitrat reductase and on other enzymes of nitrate assimilation pathway in bean. Plant Physiology, 38,629-638.
  33. Hsu, Y. T. & Kao, C. H. (2007). Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant and Soil, 291, 27-37.
  34. Hung, K. T. & Kao, C. H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of. Plant Physiology, 160, 871-879.
  35. Inanaga, S. & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Nutrition, 41(1), 103-110.
  36. Irigoyen, J. J., Emerich, D. W. & Sanchez-Diaz, M.  (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants. Physiolica Plantarum, 84, 55-60.
  37. Jafarnejadi, A. R., Sayyad, G. A., Homaee, M. & Davamei, A. H. (2013). Spatial variability of soil total and DTPAextractable cadmium caused by long-term application of phosphate fertilizers, crop rotation and soil characteristics. Environmental Monitoring and Assessment, 185(5), 4087-4096.
  38. Jianpeng, F., Qinghua, S., Xiufeng, W. & Min, W. (2010). Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium toxicity Cucumis satvius L.. Scientia Horticulturae, 123, 521-530.
  39. Kabata-Pendias, A. (2001). Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL. Pp,413.
  40. Kafi, M., Borzoie, A., Salehi, M., Kamandi, A., Masomi, A. & Nabati, G. (2009). Physiology of Environmental Stress on Plant. Jahad Mashhad University, Mashhad. (in Farsi)        
  41. Kaldis, A., Tziveleka, L., Hegedus, A., Kissimon, J., Prombonal, A., Horvath, G., Katznelson, H., Peterson, E. A. & Rovatt, J. W. (1962). Phosphate dissolving microorganisms on seed and in the root zone of plants. Canadian Journal of Botany, 40, 1181-1186.
  42. Kar, M. & Mishra, D. (1976). Catalase, Peroxidase, and Polyphenoloxidase activities during Rice leaf senescence. Plant Physiology, 57, 315-319.
  43. Kaya, C., Tuna, L. & Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress condition. Journal of Plant Nutrition, 29, 1469-1480.
  44. Keller, A. (2000). Assessment of uncertainty in modeling heavy metal balanes of regional agroecosystem. Ph.D. Thesis. Naturwissenschaften ETH Zürich, Nr. 13944.
  45. Kidd, P. S., Llugany, M., Gunse, B. & Barcelo, J. (2001). The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize Zea mays L. Journal of Experimental Botany, 52(359), 1339-5.
  46. Lasat, M.M. (2002). Phytoextraction of toxic metals-A review of biological mechanisms. Journal of Environmental Quality, 31, 109-120.
  47. Lefèvre, I., Marchal, G., Meerts, P., Corréal, E. & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65(1), 142-152.
  48. Liang, Y. C., Wong, J. W. C. & Long, W. (2005). Silicon-mediated enhacement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58, 475-483.
  49. Loeppert, R. H. & Donald, L. S. (1996). Carbonate and gypsum. Publications from USDA-ARS/UNL Faculty, P, 437-575.
  50. Ma, J. F. & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11, 392-397.
  51. Ma, J. F. &Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan.Elsevier Science. P. 275.
  52. Marchner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, New York, p, 313-323.
  53. Miao, B. H., Han, X. G. & Zhang, W. H. (2010). The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annual Botany, 105, 967-973.
  54. Millan, A., Sagardoy, R., Solanas, M., Abadia, A. & Abadia. J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentm) plant grown hydroponics. Enviromental and Expermental Botany, 65, 376-385.
  55. Nelson, D. W. & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter, P, 539-579. In: Page, A.L. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. American Society of Agronomy, Madison, WI. 
  56. Neumann, D. & Zur Nieden, U. (2001). Silicon and heavy metal tolerance of higher plants. Phytochemistry, 56, 685-692.
  57. Noha, H. A., Reda, R. Sh. & Hasan, A. (2013). Assessment of Heavy Metals Immobilization in Artificially Contaminated Soils Using Some Local Amendments. Open Journal of Metal, 3, 68-76.
  58. Noorani Azad, H. & Kafilzadeh, F. (2011). The effect of cadmium toxicity on growth, Nutrient deficiency and physiological disease of 1970 lowland rice in Ceylon. Soil Science and Plant Nutrition, 16, 11-23.
  59. Omid Bigi, R. (2000). Apporaches production and processing of medicinal plant. MashhadPublications, Astan Quds Razavi. P. 397. (in Farsi)
  60. Pandey, N. & Sharma, C. P. (2002). Effects of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science, 163, 753-758.
  61. Prasad, A., Kumar, S., Khaliq, A. & Pandey, A. (2011). Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil Ocimum basilicum L. Biology and Fertility of Soils, 47(8), 853-861.
  62. Rahimi, T. & Ronaghi, A. (2012). Effect of different zinc sources on concentration of cadmium and some micronutrients in spinach grown on a calcareous soil. Journal of Greenhouse Culture Science and Technology, 3(10), 101-112. (in Farsi)
  63. Ramos, I., Esteban, E., Lucena, J. J. & Garate, A. (2002). Cadmium uptake and subcellular distributio in plants of Lactuca sp. Cd-Mn intraction. Plant Science, 162, 761-767.
  64. Raziuddin, N., Farhatullah, G., Hassan, M., Akmal, S., Slim Shah, F., Mohhamad, M., Shafi, J., Bakht, W. & Zhou, G. (2011). Pakistan Journal of Botany, 43(1), 333-340.
  65. Ritchie, S. W. & Nguyen, H. T. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111.
  66. Robert, S. & Joanna, D. (2003). Cadmium-Induced Changes in Growth and Cell Cycle Gene Expression in Suspension-Culture Cells of Soybean. Plant Physiology and Biochemistry, 41, 767-4872.
  67. Samuels, A. L., Glass, A. D. M., Ehret, D. L. & Menzies, J. G. (1993). The effects of silicon supplementation on cucumber fruit: Changes in surface characteristics. Annals of Botany, 72, 433-440.
  68. Sanita, L. & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and experimental Botany, 41, 105-130.
  69. Sanitata di toppi, L. & Gabbriella, R. (1999). Response to Cd in higher plant- Review. Enviromental and Exprimental Botany, 45, 105-130.
  70. Shanker, A. K., Cervantes, C., Loza-Tavera, H. & Avudainayagam, S. (2005). Chomium toxicity in plants. Environomental International, 31,739-753.
  71. Sharma, R. K., Agrawal, M. & Agrawal, S. B. (2008).Interactive effects of cadmium and zinc on carrots: growth and biomass accumulation. Journal of Plant Nutrition, 31, 19-34.
  72. Siddhu, G., Shingh sirohi, D., Koshyap, K., alikhan, I. & Ali khan, M. A. (2008). Toxicity of cadmium on growth and yield of Solanum melongena. Journal of Environmental Biology, 29(6), 853-857.
  73. Soon, Y. K. & Abboud, S. (1993). Cadmium, chromium, lead and nickel.pp.103-107. In: M.R. Carter (ed.). Soil Sampling and Methods of Analysis. Lewis Publishers.
  74. Sposito, G. (1989). The Chemistry of Soils. New York: Oxford University Press. Soil, 154, 103-109.
  75. Tabande, L. (2015). Introducing Different methods Contaminated Soils Correction, Research and Education Center Agriculture and Natural Resources Fars. P, 2-4. (in Farsi)
  76. Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S. & Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements. Medicinal Biology, 20, 181-189.
  77. Vassilev, A. & Yordanov, I. (1997). Reductive analysis of factors limiting growth of with Active Yeast Extract or with Garlic Cloves Extract. Research Journal of Agriculture, 34, 293-302.
  78. Veselov, D., Kuudoyarova, G., Syymonyan, M. &. Veselov, S. T. (2003). Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seadling.  Plant Physiology, 117, 353-359.
  79. Wang, L., Zhou, Q., Ding, L & Sun. Y.  (2008). Effect of cadmium toxicity on nitrogen metabolismin leaves of Solanum nigarum L.. Journal of Hazard Materials, 154, 818-814.
  80. Wang, L. G., Wang, Y. H., Chen, Q., Cao, W. D., Li, M. & Zhang, F. C. (2000). Silicon induced cadmium tolerance of rice seedlings. Journal of Plant Nutrition, 23, 1397-1406. 
  81. Zargari, A. (2004). Medicinal Plants. Tehran University Publication. Tehran. Vol.4. (in Farsi)
  82. Zhang, G., Fukami, M. & Sekimoto, H. (2002). Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research, 77, 93-98.