Investigating the Genetic Diversity of Fruit Traits and Their Relationship with Molecular Markers in Olive Genotypes

Document Type : Full Paper

Authors

1 Department of Plant Production, College of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran

2 Olive Research Station of Tarom, Crop and Horticultural Science Research Department, Zanjan, Agricultural and Natural Resources Research and Education Center, AREEO, Tarom, Zanjan, Iran

3 Department of Plant Production, College of Agriculture and Natural Resources of Gonbad Kavous University, Gonbad Kavous, Golestan, Iran

4 Department of Department of Plant Production, College of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran

Abstract

This research was conducted to investigate the genetic diversity and the relationship between molecular markers and fruit-related traits in 98 olive genotypes during 2019-2021 at Gonbadkavous University. Nineteen growth and morphological traits of 150 olive fruits associated with each genotype were assesed. All the investigated traits showed significant differences among olive genotypes at the 1% probability level, indicating a high level of genetic diversity among the genotypes. Mean comparisons showed that 'Caridolia' and 'D1' genotypes exhibited greater fruit length and diameter, while 'D1' genotype also demonstrated superiority in fruit weight, fruit flesh weight, and stone weight. The 'Amygdalolia' genotype showed the greater stone length. The most significant positive correlations were observed between fruit length and diameter (0.909*), as well as between fruit flesh weight and fruit weight (0.994*). The results of regression analysis demonstrated that fruit flesh weight and stone weight had the strongest correlation with fruit weight at a 1% probability level. Additionally, fruit weight, flesh-to-stone ratio, fruit diameter, and flesh thickness were found to be most closely associated with the weight of the fruit. According to the results of cluster analysis, genotypes were classified into four distinct groups based on their fruit characteristics, with the third group demonstrating superiority in the majority of these traits. The results of association analysis involving CAAT, ScoT, ITS, and IJS markers in relation to the studied traits revealed that multiple alleles are responsible for controlling fruit length, fruit symmetry, nipple, stone shape, number of grooves, and stone weight. Among these traits, fruit symmetry, nipple, and number of grooves had the highest cumulative coefficient of determination. The allele SCoT21-B showed the strongest association with nine traits, followed by the allele IJS9-A with five traits. The findings from this research can be utilized in breeding programs to develop olive cultivars that show improved yield.

Keywords

Main Subjects


Extended Abstract

Introduction

The Olive tree (Olea europaea L.) is among the oldest cultivated plants found in the Mediterranean region. Owing to scientific progress and heightened awareness, the consumption of olives has grown significantly. Olive oil, which is rich in oleic acid, is esteemed for its therapeutic and medicinal properties. In Iran, olives are particularly important due to their high oil content. Understanding different genotypes and their relationships are crucial for genetic studies, and this require examining both morphological and employing molecular markers. Morphological traits, such as fruit characteristics, are crucial as they reflect the genetic makeup of the plant and its interaction with the environment. Molecular markers, which can be easily measured, are also powerful tools for identifying genotypes and assessing genetic diversity. This study explored the extent of genetic diversity in a large collection of olive germplasm utilizing morphological characteristics of fruit and molecular markers. The findings of this study could be valuable for olive breeding programs, helping to select parent plants with desirable traits for improved yield, quality, and disease resistance.

 

Materials and Methods

A total of 89 olive genotypes cultivated in Tarem Olive Research Station of Zanjan Province, Iran were analyzed in this study during 2019-2021. To evaluate the characteristics of fruit length, fruit diameter, fruit symmetry, fruit shape, position of maximum diameter, fruit apex, nipple, presence of lenticels, size of lenticels, site of color change initiation, flesh thickness, flesh-to-stone ratio, stone length, stone shape, number of grooves, stone apex, fruit weight, fruit flesh weight, and stone weight, the sum of 150 fruits from each genotype were selected. For the purpose of molecular analysis, fresh and young leaves of olive trees were collected for DNA extraction. The leaves were powdered with the aid of liquid nitrogen and extracted using the CTAB method. The quality of DNA was assessed through horizontal electrophoresis with 0.8% agarose gel. PCR reactions were performed using CAAT, ScoT, ITS, and IJS markers. SPSS software version 24 was used to analyze the relationship between morphological traits and the analysis between morphological and molecular traits.

 

Results and Discussion

All the investigated traits showed significant differences among olive genotypes at the 1% probability level, indicating very high genetic diversity among the genotypes. The results of mean comparisons showed that “Caridolia” and “D1” genotypes demonstrated the greatest fruit length and diameter, while 'D1' also excelled in fruit weight, fruit flesh weight, and stone weight. The 'Amygdalolia' genotype had the longest stone length. The highest significant positive correlations were observed between fruit length and diameter (0.909*), as well as between fruit flesh weight and fruit weight (0.994*). Additionally, there was a positive and significant correlation between fruit weight and stone weight (0.842) at the 1% probability level. The finding of regression analysis, considering fruit weight as the dependent variable and other traits as independent variables, showed that fruit flesh weight and stone weight had the highest correlation with fruit weight at the 1% probability level. Furthermore, fruit weight, flesh-to-stone ratio, fruit diameter, and flesh thickness were most related to fruit weight. Cluster analysis divided the genotypes into four groups based on fruit traits, with the third group being superior in traits such as fruit length, stone length, fruit weight, fruit flesh weight, stone weight, fruit diameter, flesh thickness, flesh-to-stone ratio, size of lenticels, and number of grooves. Association analysis between molecular markers and various traits revealed that fruit length, fruit symmetry, nipple, stone shape, number of grooves, and stone weight were controlled by multiple alleles. Among these traits, fruit symmetry, nipple, and number of grooves had the highest cumulative coefficient of determination. The strongest association of the alleles to traits was obtained from allele SCoT21-B and IJS9-A with nine five traits, respectively.

 

Conclusion

This study revealed significant genetic diversity among olive genotypes, with 'Caridolia' and D1 genotypes showing superior fruit traits. Strong correlations were found between key traits, and regression analysis highlighted fruit flesh weight and stone weight as major factors influencing fruit weight. Molecular marker analysis identified important alleles, with SCoT21-B showing the strongest association with multiple traits. These findings are valuable for breeding programs aimed at improving olive cultivars.

 

Author contributions

A.R. Dadars and H. Sabouri carried out the planning and design of the experiment. Experimental sample collection was carried out by A.R. Dadars. A. Tanhaei conducted the experiments. A.R. Dadars, H. Saboor, and S.J. Sajadi analyzed the data. A. Tanhaei, H. Sabouri, and A.R. Dadars wrote the initial draft of the manuscript. A.R. Dadars, H. Sabouri, and S.J. Sajadi contributed to the interpretation of the results. All authors provided critical feedback and made significant contributions throughout all stages of the research, data analysis, and manuscript completion.

Data availability statement

Data available on request from the authors

 

Acknowledgements

The authors would like to express their gratitude and appreciation to the Olive Research Station of Tarom County and the Agricultural Research Center of Zanjan Province for their collaboration in providing the plant materials for the present research.

 

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

 

Conflict of interest

     The authors declare no conflict of interest.

منابع

ابراهیم نیا، سمیه؛ سیفی، اسماعیل؛ همتی، خدایار. و فریدونی، حسین (1398). بررسی تنوع ریخت شناختی بعضی از ژنوتیپ‌های زیتون منطقه گرگان. پژوهش‌های تولید گیاهی (علوم کشاورزی و منابع طبیعی)، 26(4 )، 97-113.
احمدی، زهرا؛ سلیمانی، علی؛ طاهری، مهدی و صبا، جلال (1396). روابط بین صفات گل و میوه در برخی ارقام زیتون در شرایط آب و هوائی طارم. مجله بهنژادی نهال و بذر، 33(3)، 283-297.
تقی زاده، امیر‌عباس؛ زینانلو، علی اصغر و امینیان دهکردی، رقیه (1399). ارزیابی میانگین‌گیری متحرک بر مطالعات سازگاری زیتون .(Olea europaea L.) نشریه علمی پژوهشی دانش کشاورزی و تولید پایدار، 30(3(، 295-309.
حسینی قیداری، فرشته و طاهرنژاد، زهرا (1398). بررسی تنوع ژنتیکی دو ژنوتیپ برتر زیتون استان قم در مقایسه با برخی ارقام تجاری موجود در باغ فدک این استان با استفاده از صفات ریخت‌شناسی و نشانگرهای ISSR. تولیدات گیاهی، 42(3)، 373-386.
سیستانی، فاطمه؛ رمضان‌پور، سیده ساناز؛ سلطانلو، حسن و سیفی، اسماعیل. (1391). تجزیه خوشه­ای و تجزیه واریانس در ارزیابی تنوع ژنتیکی ژنوتیپهای زیتون برای صفات کمی. دوازدهمین کنگره ژنتیک ایران، دانشگاه شهید بهشتی، تهران، ایران، 1- 3 خرداد.
صادقیان مطهر، س.ی.، نانکلی، ع.، زینانلو، ع.ع. و قنواتی، ف. (1397). دستورالعمل ملی برای انجام آزمایشات تمایز، یکنواختی و پایداری، مؤسسه گواهی و ثبت بذر و گیاه. 1-26.
صفی پور، سیروس؛ خالقی، اسمعیل و معلمی، نوراله (1400). ارزیابی تنوع ژنتیکی ژنوتیپ‌های مختلف زیتون در برخی از شهرستان‌های استان خوزستان با استفاده از نشانگر مورفولوژیک. تولیدات گیاهی، 44(1)، 1-12.
عبادی، رحیم؛ بی‌همتا، محمد رضا و بهمنی، رامین (1397). بررسی تنوع ژنتیکی و تجزیه رگرسیون برخی صفات در 30 رقم زیتون ایرانی و خارجی با استفاده از صفات کمی و کیفی. علوم باغبانی ایران، 49(4)، 845-858.
عجم‌گرد، فریدون و زینانلو، علی اصغر (1392) مقایسه عملکرد کمی و کیفی ارقام زیتون در شمال استان خوزستان. مجله به‌نژادی نهال و بذر، 29(3)، 567-579.
گل‌محمدی، محمد؛ سفالیان، امید؛ احمدی، جعفر؛ طاهری، مهدی؛ قنبری، علیرضا و رسولی، ولی‌اله (1397). ارزیابی تنوع ژنتیکی در برخی ارقام ایرانی و خارجی و ژنوتیپ های امیدوارکننده زیتون با استفاده از نشانگرهای ISSR. فصلنامه ژنتیک نوین، 13(4)، 479-487.
متقی، لیلا؛ حسینی‌مزینانی، سید‌مهدی و جباری، حمید (1391). بررسی تنوع ژنتیکی برخی ارقام زیتون ایران با استفاده از نشانگرهای RAPDs. گیاه و زیست بوم، 8(33)، 91-104.
مردی، محسن؛ زین العابدینی، مهرشاد؛ زینالو، علی‌اصغر‌؛ خیام نکوئی، سید‌ مجتبی؛ جمالی، سید حسین؛ کاوند، عبدالرضا؛ پتکی، پیام؛ احمدی، کریم؛ عبدی، سعید؛ شمس‌کیا، فرشاد؛ خوشکام، صغری؛ طاهرنژاد، زهرا و لونی، علی اکبر (1395). کاربرد نشانگرهای ریزماهواره جهت شناسایی و ثبت ارقام زیتون. نشریه پژوهش‌های تولید گیاهی، 23(1)، 1-21.
نظامیوند چگینی، مهناز؛ سمیع زاده لاهیجی، حبیب‌اله؛رمضانی ملک‌رودی، محمد و محسن­زاده گلفزانی، محمد (1394). بررسی تنوع ژنتیکی چهار رقم زیتون از طریق نشانگرهای ریخت‌شناختی. به­نژادی گیاهان زراعی و باغی. 3(2)، 201-213.
نوری‌زاده، محمد؛ عظیمی، محمود و عبدالهی، عزیز‌اله (1398). بررسی سازگاری تعدادی از ارقام زیتون یونانی در منطقه طارم. نشریه پژوهش‌های تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان. 26(3)، 153-166.
 
REFERENCES
Abdelhamid, S., Grati-kamiun, N., Marra, F. & Caruso, T. (2011). Genetic similarity among Tunisian cultivated olive estimated through SSR markers. Scientia Agricola, 70(1), 33-38. https://doi.org/10.1590/S0103-90162013000100006.
Ahmadi, Z., Soleimani, A., Taheri, M. & Saba, J. (2017). Correlation between flower and fruit characteristics in some olive cultivars in climatical conditions of Tarom. Seed and Plant Improvement Journa, 33(3), 283-297. (In Persian). https://doi.org/10.22092/spij.2017.116654.
Ajamgard, F. & Zeinaloo, A. A. (2013). Comparison of quantitative and qualitative yield of olive cultivars in north of Khuzestan province, Iran. Seed and Plant Journal, 29(3), 567-579. (In Persian). https://doi.org/10.22092/spij.2017.111176.
Alba, V., Montemurro, C., Sabetta, W., Pasqualone, A. & Blanco, A. (2009). SSR-based identification key of cultivars of Olea europaea L. diffused in Southern-Italy. Scientia Horticulturae, 123(1), 11-16. https://doi.org/10.1016/j.scienta.2009.07.007.
Albertini, E., Torricelli, R., Bitocchi, E., Raggi, L., Marconi, G., Pollastri, L., Di Minco, G., Battistini, A., Papa, R. & Veronesi, F. (2011). Structure of genetic diversity in Olea europaea L. cultivars from central Italy. Molecular breeding, 27, 533–547. https://doi.org/10.1007/s11032-010-9452-y.
An, Z. W., Xie, L. L., Cheng, H., Zhou, Y., Zhang, Q., He, X. G. & Huang, H. S. (2009) A silver staining procedure for nucleic acids in polyacrylamide gels without fixation and pretreatment. Analytical Biochemistry, 391(1), 77-79. https://doi.org/10.1016/j.ab.2009.04.036.
International olive oil council (2000). World catalogue of olive varieties. 360 pp.
Collard, B. C. & Mackill, D. J. (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27, 86-93. https://doi.org/10.1007/s11105-008-0060-5.
Ebadi, R., Bihamta, M. R. & Bahmani, R. (2019). Assessment of genetic variation between some of the Iranian and foreign olive cultivars with using of quantitative and qualitative traits. Iranian Journal of Horticultural Science, 49(4), 845-858. (In Persian). https://doi.org/10.22059/ijhs.2018.270376.1548.
Ebrahimnia, S., Seifi, E., Hemmati, K. H. & fereidooni, H. (2019). Study of morphological diversity in some olive genotypes of Gorgan region. Journal Plant Production, 26(4), 97-113. (In Persian). https://doi.org/10.22069/jopp.2019.15418.2379.
Ercisli, S., Ipek, A. & Barut, E. (2011). SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea L.)Biochemical Genetics49(9-10), 555-561. https://doi.org/10.1007/s10528-011-9430-z.
Ghanbari, A. & Estaji, A. (2019). ISSR analysis for determination of genetic diversity in 29 olive (Olea europaea L.) cultivars. Iranian journal of Genetics and Plant Breeding, 7(1), 31-40. (In Persian). https://doi.org/10.30479/ijgpb.2019.9207.1206.
Golmohammadi, M., Sofalian, O., Ahmadi, J., Taheri, M., Ghanbari, A. & Rasoli, V. (2018). Evaluation of genetic variation in some Iranian and foreign cultivars and promising genotypes of olive using ISSR markers. Modern Genetics Journal 13(4), 479-487. (In Persian). http://mg.genetics.ir/article-1-83-fa.html
Hosseini Gheydari, F. & Tahernezhad, Z. (2019). Genetic analysis of some genotypes and varieties of olive in Qom province using morphological and ISSR markers. Plant Productions, 42(3), 373-386. (In Persian). https://doi.org/10.22055/ppd.2019.23698.1521.
IBM Corp. Released. 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.
Koehmstedt, A. M., Aradhya, M. K., Soleri, D. Smith, J. L., & Polito, V. S. (2011). Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Genetic Resources and Crop Evolution, 58(4), 519–531. https://doi.org/10.1007/s10722-010-9595-z.
Mardi, M., Zeinalabedini, M., Zeinaloo, A. A., Khayam Nekouei, M., Jamali, S. H., Kavand, A. R., Potki, P., Ahmadi, K., Abdi, S., Shamskia, F., Khoshkam, S., Tahernejad, Z. & Loni, A. A. (2016). Application of microsatellite markers for Identification and registration of olive cultivars. Journal of Plant Production Research, 23(1), 1-21. 20.1001.1.23222050.1395.23.1.2.6.
Milotić, A., Šetić, E., Peršuric, D., Poljuha, D., Sladonja, B. & Brščić, K. (2005). Identification and characterization of autochthonous olive varieties in Istria (Croatia). Annales: Series Historia Naturalis, 15 (2), 251-256. http://www.dlib.si/details/URN:NBN:SI:doc-HITADHIV.
Motaghi, L., Mazinani, S. M.  & Jabari, H. (2012). Evaluation of genetic diversity in some Iranian olive cultivars using RAPD markers. Plant and Ecology System, 8(33), 91-104. (In Persian).
Nezamivand Chegini, M., Samizadeh Lahiji, H., Ramezani Malakroodi, M. & Mohsenzadeh Golfazani, M. (2015). Assessment of genetic diversity among four olive cultivars using morphological markers. Journal of Applied Crop Breeding, 3(2), 201-213. (In Persian).
Nourizadeh, M., Azimi, M. & Abdullahi, A. A. (2019). Study on the adaptability of some Greek olive varieties in Tarom region. Journal of Plant Production, 26(3), 153-166. https://doi.org/10.22069/jopp.2019.15445.2391.
Omrani-Sabbaghi, A., Shahriari, M., Falahati-Anbaran, M., Mohammadi, S. A., Nankali, A., Mardi, M. & Ghareyazie, B. (2007). Microsatellite markers-based assessment of genetic diversity in Iranian olive (Olea europaea L.). Collections Scientia Horticulturae, 112(4), 439–447. https://doi.org/10.1016/j.scienta.2006.12.051.
Rafalski, A., Gidzinska, M. & Wisniewska, I. )1997(. PCR-based systems for evaluation of relationships among maize inbreds. Genetics and Biotechnology of Maize and Sorghum. Royal Society Chemistry Cambridge. UK.,106-111. 
Ramesh, P., Mallikarjuna, G., Sameena, S., Kumar, A., Gurulakshmi, K., Reddy, B. V. & Sekhar, A. C. (2020). Advancements in molecular marker technologies and their applications in diversity studies. Journal of Biosciences, 45, 123. https://doi.org/10.1007/s12038-020-00089-4.
Sadeghian Motahar, S. Y., Nankali, A., Zinanlo, A. A. & ghanavati, F. (2019). National guidelines for the conduct of tests for distinctness, uniformity and stability, Seed and Plant Certification and Registration Institute, 1-26. (In Persian).
Safipour, S., Khaleghi, E. & Moallemi N. (2021). Evaluation of genetic diversity of different olive genotypes in some cities of Khuzestan province using morphological marker. Plant Productions, 44(1), 1-12. (In Persian). https://doi.org/10.22055/ppd.2019.26385.1622.
Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. & Allard, R. W. (1984). Ribosomal DNA sepacer length polymorphism in barley: mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences, 81(24), 8014–8019. https://doi.org/10.1073/pnas.81.24.8014.
Singh, A. K., Rana, M. K., Singh, S., Kumar, S., Kumar, R. & Singh, R. (2014). CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. Journal of Plant Biochemistry and Biotechnology, 23, 175-183. https://doi.org/10.1007/s13562-013-0199-5.
Sistani, F., Ramezanpour, S. S., soltanloo, H. & seifi, E. (2012, 21-23 May). Cluster analysis and varience analysis in evaluation of genetic diversity olive genotypes for quantative traits. 12th Iranian Genetics Congress, Shahid Beheshti University, Tehran, Iran. (In Persian).
Taghizadeh, A. A., Zeinanloo, A. A & Aminian Dehkordi, R. (2020). Evaluation of moving averages on stability studies of olive (Olea Europaea L.). Journal of Agricultural Science and Sustainable Production, 30(3), 295-309.  (In Persian). https://dor.isc.ac/dor/20.1001.1.24764310.1399.30.3.17.2