اتحادپور، مرضیه؛ فتاحی مقدم، محمدرضا؛ زمانی، ذبیحاله؛ گلعین، بهروز و نقوی، محمدرضا (1398). بررسی اثر تنش شوری بر برخی صفات فیزیولوژیک دانهالهای برگزیده مرکبات و شناسایی ژنوتیپهای متحمل. مجله علوم باغبانی ایران، 50(2)، 421-433.
غلامی، مهدیه و راحمی، مجید (1388). بررسی اثرات تنش شوری کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی پایه رویشی هیبرید هلو-بادام (GF677). نشریه فن آوری تولیدات گیاهی، 9(1)، 21-31.
محبی، مینا؛ بابالار، مصباح؛ فتاحی مقدم، محمدرضا و عسکری، محمد علی (1400). تاثیر پتاسیم و کلسیم بر خصوصیات رویشی و تعادل یونی نهالهای پیوندی سیب روی پایههای پاکوتاه کننده تحت تنش شوری. مجله علوم باغبانی ایران، 52(2)، 429-446.
مومنی، عزیز (1389). پراکنش جغرافیایی و سطوح شوری منابع خاک ایران. مجله پژوهشهای خاک (علوم خاک و آب)، 24(3)، 203-215.
REFERENCES
AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7, 276. https://doi.org/10.3389/fpls.2016.00276.
Acharya, B. R., Sandhu, D., Duenas, C., Duenas, M., Pudussery, M., Kaundal, A., Ferreira, J. F. S., Suarez, D.L. & Skaggs, T. H. (2022). Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Scientific Reports, 12(1), 1274. https://doi.org/10.1038/s41598-022-05202-1.
Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49–60. https://doi.org/10.1016/j.plaphy.2012.11.004.
Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6.
Beacham, A. M., Hand, P., Pink, D. A., & Monaghan, J. M. (2017). Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress. Journal of the Science and Food in Agriculture, 97, 5271–5277. https://doi.org/10.1002/jsfa.8411.
Birhanie, Z. M., Yang, D., Luan, M., Xiao, A., Liu, L., Zhang, C., Biswas, A., Dey, S., Deng, Y., & Li, D. (2022). Salt stress induces changes in physiological characteristics, bioactive constituents, and antioxidants in kenaf (Hibiscus cannabinus L.). Antioxidants, 11(10), 2005.
Bolat, I., Kaya, C., Almaca, A., & Timucin, S. (2006). Calcium sulfate improves salinity tolerance in rootstocks of plum. Journal of Plant Nutrition, 29(3), 553–564. https://doi.org/10.1080/01904160500526717.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical Biochemistry, 72(1-2), 248-254.
https://doi.org/10.1016/0003-2697(76)90527-3.
Datta, U., & Chakroboarty, K. (2018). Fast and accurate method for estimation of leaf area index by image processing system: An innovative concept. The Pharma Innovation Journal, 7(8), 401-404.
Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., & Turkan, I. (2007). Responses of the cherry rootstock to salinity in vitro. Biologia plantarum, 51, 597-600. https://doi.org/10.1007/s10535-007-0132-7.
Etehadpour, M., Fatahi Moghadam, R., Zamani, Z., Golein, B., & Naghavi, M. R. (2019). Effect of salinity stress on some physiological traits of selected citrus seedlings and identification of tolerant genotypes. Iranian Journal of Horticultural Science, 50(2), 421-433. doi: 10.22059/ijhs.2018.253957.1417. (In Persian).
Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. (2014). Salinity stress increases secondary metabolites and enzyme activity in safflower.
Industrial Crops and Products, 64, 175-181.
http://dx.doi.org/10.1016/j.indcrop.2014.10.058.
Gholami, M., & Rahemi, M. (2009). Effect of NaCl salt stress on physiological and morphological characteristics of vegetative peach-almond hybrid (GF677) rootstock. Plant Production Technology, 9(1), 21-31. (In Persian).
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
Gonzalez, E. M., de Ancos, B., & Cano, M. P. (1999). Partial characterization of polyphenol oxidase activity in raspberry fruits.
Journal of Agricultural and Food Chemistry, 47(10), 4068-4072.
https://doi.org/10.1021/jf981325q.
Guo, X., Ahmad, N., Zhao, S., Zhao, C., Zhong, W., Wang, X., & Li, G. (2022). Effect of salt stress on growth and physiological properties of Asparagus seedlings. Plants, 11(21), 2836. https://doi.org/10.3390/plants11212836.
Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance.
Horticulturae, 7(6), 132.
https://doi.org/10.3390/horticulturae7060132.
Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681. https://doi.org/10.3390/antiox9080681.
Hoffman, G. J., Catlin, P. B., Mead, R. M., Johnson, R. S., Francois L. E., & Goldhamer, D. (1989). Yield and foliar injury responses of mature plum trees to salinity. Irrigation Science, 10(3), 215-229. https://doi.org/10.1007/BF00257954.
Jung, S. (2004). Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science, 166, 459-466. https://doi.org/10.1016/j.plantsci.2003.10.012.
Kamran, M., Xie, K., Sun, J., Wang, D., Shi, C., Lu, Y., Gu, W., & Xu, P. (2020). Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental safety. 188, 109877. https://doi.org/10.1016/j.ecoenv.2019.109877.
Kchaou, H., Larbi, A., Gargouri, K., Chaieb, M., Morales, F., & Msallem, M. (2010). Assessment of tolerance to NaCl salinity of five olive cultivars, based on growth characteristics and Na+ and Cl− exclusion mechanisms. Scientia Horticulturae, 124(3), 306-315. https://doi.org/10.1016/j.scienta.2010.01.007.
Liu, C., Zhao, X., Yan, J., Yuan, Z., & Gu, M. (2020). Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (
Punica granatum) cultivars.
Agronomy, 10(1), 27.
https://doi.org/10.3390/agronomy10010027.
Lutts, S., Majerus, V., & Kinet, J. M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiologia Plantarum, 105(3), 450-458. https://doi.org/10.1034/j.1399-3054.1999.105309.x.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany, 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659.
Moameni, A. (2009). Geographical distribution and salinity levels of soil resources of Iran.
Iranian Journal of Soil Research, 24(3), 203-215. doi:
10.22092/IJSR.2011.126633. (In Persian).
Mohebi, M., Babalar, M., Fattahi Moghadam, M. R., & Askary, M. A. (2021). Effects of potassium and calcium on vegetative growth and mineral balance of apple tree grafted on dwarfing rootstocks, under salinity stress. Iranian Journal of Horticultural Science, 52(2), 429-446. doi: 10.22059/ijhs.2018.253336.1410. (In Persian).
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x.
Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100.
Ottman, Y., & Byrne, D. H. (1988). Screening rootstocks of Prunus for relative salt tolerance. Horticultural Science, 23(2), 375 -378. https://doi.org/10.21273/HORTSCI.23.2.375.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research, 22, 4056-4075. https://doi.org/10.1007/s11356-014-3739-1.
Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants-A review. Plant Soil and Environment, 54(3), 89. https://doi.org/10.17221/2774-PSE.
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (
Pistacia vera L.) rootstocks.
Journal of Plant Interactions, 13(1), 73-82.
https://doi.org/10.1080/17429145.2018.1424355.
Ranjbarfordoei, A., Samson, R., & Van Damme, P. (2006). Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica, 44, 513-522. https://doi.org/10.1007/s11099-006-0064-z.
Regni, L., Del Pino, A. M., Mousavi, S., Palmerini, C. A., Baldoni, L., Mariotti, R., Mairech, H., Gardi, T., DʹAmato, R., & Proietti, P. (2019). Behavior of four olive cultivars during salt stress. Frontiers in plant science, 10, 867. https://doi.org/10.3389/fpls.2019.00867.
Rieger, M. (2001). Salt stress resistance of peach and four North American prunus species. In VII International Symposium on Orchard and Plantation Systems, Acta Horticulturae. 557, 181-19. https://doi.org/10.17660/ActaHortic.2001.557.24.
Rohacek, K. (2002). Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13-29. https://doi.org/10.1023/A:1020125719386.
Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 559876. https://doi.org/10.3389/fpls.2020.559876.
Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., Conn, S., Eing, C., & Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 61, 839–853. https://doi.org/10.1111/j.1365-313X.2009.04110.x.
Singh, A., Sharma, D., Kumar, R., Kumar, A., Yadav, R., & Gupta, S. (2018). Soil salinity management in fruit crops: A review of options and challenges. In S.K., Gupta, M.R., Goyal & A., Singh (Eds), Engineering Practices for Management of Soil Salinity, CRC Press.
Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., & Sofo, A. (2012). Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species.
Acta Physiologiae Plantarum, 34, 203-213.
https://doi.org/10.1007/s11738-011-0819-4.
Su, S., Zhou, Y., Qin, J. G., Yao, W., & Ma, Z. (2010). Optimization of the method for chlorophyll extraction in aquatic plants. Journal of Freshwater Ecology, 25(4), 531-538. https://doi.org/10.1080/02705060.2010.9664402.
Tejera, N. A., Soussi, M., & Lluch, C. (2006). Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany, 58(1-3), 17–24. https://doi.org/10.1016/j.envexpbot.2005.06.007.
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527. https://doi.org/10.1093/aob/mcg058.
Toro, G., Pimentel, P., & Salvatierra, A. (2021). Effective categorization of tolerance to salt stress through clustering prunus rootstocks according to their physiological performances. Horticulturae, 7(12), 542. https://doi.org/10.3390/horticulturae7120542.
Tristantini, D., & Amalia, R. (2019). Quercetin concentration and total flavonoid content of anti-atherosclerotic herbs using aluminum chloride colorimetric assay.
AIP Conference Proceedings,
2193(1), 030012.
https://doi.org/10.1063/1.5139349.
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60-67. https://search.informit.org/doi/10.3316/informit.182984019960534.
Yin, R., Bai, T., Ma, F., Wang, X., Li, Y., & Yue, Z. (2010). Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Scientia Horticulturae, 126(2), 247-252. https://doi.org/10.1016/j.scienta.2010.07.027.
Yokoi, S., Bressan, R. A., & Hasegawa, P. M. (2002). Salt stress tolerance of plants. Japan International Research Center for Agricultural Sciences working report, 23(1): 25-33.
Zhang, H. B., & Xu, D. Q. (2003). Role of light-harvesting complex II dissociation in protecting the photosystem II reaction centres against photodamage in soybean leaves and thylakoids. Photosynthetica, 41, 383-391. https://doi.org/10.1023/B:PHOT.0000015462.71601.d7.
Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity.
The Innovation, 1(1), 100017.
https://doi.org/10.1016/j.xinn.2020.100017.