Evaluation of Iranian spinach populations by the synchronic study of morphological ‎traits, photosynthetic indices and oxalate accumulation

Document Type : Full Paper

Authors

1 Ph.D. Candidate, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

2 Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

Spinach, due to high nutrition and economic value, highly regarded by the breeders. In this research, 40 populations belonging to three species of Spinacia oleracea, S. turkestanica, and S. tetrandra from most parts of Iran, along with a wild population from Afghanistan and two commercial cultivars Viroflay and Baby spinach, formed the studied germplasm. Thirty-three traits were classified under three groups of morphological, physiological, and biochemical. The results showed that the germplasm had a rich genetic structural diversity for the studied traits. The average coefficient variance of the studied traits was 29.8%. Oxalate accumulation showed a significant difference in the studied populations. The minimum oxalate accumulation was observed in the Karaj population of S. oleracea with 682 mg per 100 g FW. The maximum accumulation was found in the Bazangan population, the wild species of S. turkestanica, with 2902 mg per 100 g FW. The cluster analysis results put the two wild species populations in the same group and separated from the other ones. The coefficients of correlation were ranged from -0.83 to 0.99. In total, 43.1% out of all trait's interactions had a significant correlation (α = 0.01 or 0.05). The correlation results showed that the plant with a higher performance index had more freshness after harvesting. Also, the blistering was the only trait of among of all that had a significant negative correlation with oxalate accumulation.

Keywords


  1. Abolghasemi, R., Haghighi, M., & Etemadi, N. (2019). Screening of some native and foreign accessions of spinach for spring culture in Isfahan. Iran Agricultural Research, 38(1), 87-99.
  2. (2005). Minimum descriptors for leafy vegetables ECPGR Working Group on Leafy Vegetables First Meeting, 1-6.
  3. Araus, J., Amaro, T., Voltas, J., Nakkoul, H., & Nachit, M. (1998). Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under mediterranean conditions. Field Crops Research, 55(3), 209-223.
  4. Asadi, H., & Hasandokht, M. (2007). Study of genetic diversity on iranian spinach genotypes. Iranian Journal of Agricultural Sciences, 38(2), 257-265 (In Farsi).
  5. Astley, D., & Ford-Lloyd, B. (1981). The evolutionary significance of multigermicity in the genusspinacia (chenopodiaceae). Plant Systematics and Evolution, 137(1-2), 57-61.
  6. Ayana, A., & Bekele, E. (1999). Multivariate analysis of morphological variation in sorghum (sorghum bicolor (l.) moench) germplasm from Ethiopia and Eritrea. Genetic Resources and Crop Evolution, 46(3), 273-284.
  7. Correll, J., Bluhm, B., Feng, C., Lamour, K., Du Toit, L., & Koike, S. (2011). Spinach: Better management of downy mildew and white rust through genomics. European Journal of Plant Pathology, 129 (2), 193- 205.
  8. Damania, A. B., Pecetti, L., Qualset, C. O., & Humeid, B. O. (1996). Diversity and geographic distribution of adaptive traits in Triticum turgidum (durum group) wheat landraces from turkey. Genetic Resources and Crop Evolution, 43(5), 409-42.
  9. Decoteau, D. R. (2000). Vegetable crops: Prentice Hall, 464pp.
  10. Doležalová, I., Křístková, E., Lebeda, A., & Vinter, V. (2002). Description of morphological characters of wild Lactuca spp. genetic resources (english-czech version). Horticultural Science. (Prague), 29(2), 56-83.
  11. Eftekhari, S., Hassandokht, M. R., Fattahi Moghadam, M. R., & Kashi, A. (2010). Genetic diversity of some Iranian spinach (Spinacia oleracea L) landraces using morphological traits. Iranian Journal of Horticultural Science, 41(1), 83-93 (In Farsi).
  12. Genty, B., Briantais, J.-M., & Da Silva, J. B. V. (1987). Effects of drought on primary photosynthetic processes of cotton leaves. Plant Physiology, 83(2), 360-364.
  13. Ghashghaie, G. C. J., Genty, B., & Briantais, J. (1992). Leaf photosynthesis is resistant to a mild drought Photosynthetica, 27(3), 295-309.
  14. Hamrick, J. (1995). Conservation genetic of endemic plant species. Conservation Genetics, 231-304.
  15. Ito, M., Ohmido, N., Akiyama, Y., Fukui, K., & Koba, T. (2000). Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. Journal of the American Society for Horticultural Science, 125(1), 59-62.
  16. Kaminishi, A., & Kita, N. (2006). Seasonal change of nitrate and oxalate concentration in relation to the growth rate of spinach cultivars. HortScience, 41(7), 1589-1595.
  17. Kawazu, Y., Okimura, M., Ishii, T., & Yui, S. (2003). Varietal and seasonal differences in oxalate content of spinach. Scientia Horticulturae, 97(3-4), 203-210.
  18. Kitchen, J., Burns, E., & Perry, B. (1964). Calcium oxalate content of spinach (Spinacia oleracea). Journal of the American Society for Horticultural Science, 84, 441-445.
  19. Lester, G. E., Makus, D. J., Hodges, D. M., & Jifon, J. L. (2013). Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea) leaf bionutrients: Vitamins (C, E, folate, K1, provitamin A), lutein, phenolics, and antioxidants. Journal of Agricultural and Food Chemistry, 61(29), 7019-7027.
  20. Morelock, T. E., & Correll, J. C. (2008). Spinach vegetables I (pp. 189-218) Springer.
  21. Mou, B. (2008). Evaluation of oxalate concentration in the us spinach germplasm collection. HortScience, 43(6), 1690-1693.
  22. Naik, V. V., Patil, N. S., Aparadh, V. T., & Karadge, B. A. (2014). Methodology in determination of oxalic acid in plant tissue: A comparative approach. Journal of Global Trends in Pharmaceutical Sciences, 5(2), 1662-1672.
  23. Obando, J., Miranda, C., Jowkar, M., Moreno, E., Sour, M., Martínez, J., & Fernandez-Trujillo, J. (2007). Creating climacteric melon fruit from nonclimacteric parentals: postharvest quality implications (pp. 197-205) Springer.
  24. Obando‐Ulloa, J. M., Jowkar, M. M., Moreno, E., Souri, M. K., Martínez, J. A., Bueso, M. C., & Fernández‐Trujillo, J. P. (2009). Discrimination of climacteric and non‐climacteric melon fruit at harvest or at the senescence stage by quality traits. Journal of the Science of Food and Agriculture, 89(10), 1743-1753.
  25. Rechinger, K. H. (1963). Flora Iranica: Flora des iranischen hochlandes und der umrahmenden gebirge: Akademische Druck-und Verlagsanstalt.
  26. Ribeiro, H. L. C., Santos, C. A. F., Diniz, L. D. S., Nascimento, A. D., & Nunes, E. D. (2016). Phenotypic correlations and path analysis for plant architecture traits and grain production in three generations of cowpea. Revista Ceres, 63(1), 33-38.
  27. Ryder, E. J. (1979). Leafy salad vegetables: Springer Science & Business Media.
  28. Sabaghnia, N., Asadi-Gharneh, H., & Janmohammadi, M. (2015). Genetic diversity of spinach (Spinacia oleracea) landraces collected in Iran using some morphological traits. Acta Agriculturae Slovenica, 103(1), 101-111.
  29. Sarikhani Khorami, S. & Vahdati, K. (2019). Determination of persian walnut yield components and its correlation with phenological, morphological and biochemical traits. Iranian Journal of Horticultural Science, 50(3), 549-560 (In Farsi).
  30. Shi, A., Mou, B., & Correll, J. C. (2016). Association analysis for oxalate concentration in spinach. Euphytica, 212(1), 17-28.
  31. Shubha, K., & Singh, D. (2018). Selection of yield-associated morphological and biochemical traits using correlation and path coefficient analysis in potato (Solanum tuberosum) in the foothills of north-western Himalayas. Potato Research, 61(3), 273-281.
  32. Siener, R., Hönow, R., Seidler, A., Voss, S., & Hesse, A. (2006). Oxalate contents of species of the polygonaceae, amaranthaceae and chenopodiaceae families. Food Chemistry, 98(2), 220-224.
  33. Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787-792.
  34. Souri, M. K., & Hatamian, M. (2019). Aminochelates in plant nutrition: a review. Journal of Plant Nutrition, 42(1), 67-78.
  35. Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanisms, Regulation and Adaptation, 445-483.
  36. Svobodová, I., & Misa, P. (2004). Effect of drought stress on the formation of yield elements in spring barley and the potential of stress expression reduction by foliar application of fertilizers and growth stimulator. Plant Soil and Environment, 50(10), 439-446.
  37. Swiader, J. M., Ware, G. W., & McCollum, J. P. (1992). Producing vegetable crops: Interstate Printers and Publishers Inc.
  38. (2007). International union for the protection of new varieties of plants (UPOV). Spinach: guidelines for the conduct of tests for distinctness, uniformity and stability. 29 pp.
  39. Van Treuren, R., Coquin, P., & Lohwasser, U. (2012). Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): Composition and gaps. Genetic Resources and Crop Evolution, 59(6), 981-997.
  40. Živčák, M., Brestič, M., Olšovská, K., & Slamka, P. (2008). Performance index as a sensitive indicator of water stress in Triticum aestivum Plant Soil and Environment, 54(4), 133-139.
  41. Triticum aestivum Plant Soil and Environment, 54(4), 133-139.