The evaluation of cross progeny between Elite lines and commercial hybrid ‘Negeen’

Document Type : Full Paper

Authors

1 M. Sc. Student, Department of Horticultural Science, Faculty of Agricultural Science, Guilan University, Iran

2 Associate Professor, Department of Horticultural Science, Faculty of Agricultural Science, Guilan University, Iran

Abstract

The development of fruits without fertilization called parthenocarpy. Interacting genetic and physiological factors can affect parthenocarpy. In previous research superior lines of cucumber with high general combining ability which able to produce superior hybrids with high heterosis released but the lines have no enough parthenocarpic fruits. In this study, the possibility of crossing elite lines with commercial hyrid cv. Negeen studied and their progeny evaluated. Commercial cultivar 'Negeen' used as donor parent. Experiment conducted in complete randomized block design with three replication and characteristics including the number of parthenocarpic fruits, number of male flowers, number of lateral branches, percentage of parthenocarpic fruits, percentage of male flowers evaluated. Results showed that progeny of commercial cultivar 'Negeen' with B10 had the maximum number of parthenocarpic fruits. The minimum number of male flowers related to the progeny of commercial cultivar 'Negeen' with A10. The progeny of commercial cultivar 'Negeen' with A10 had the least of lateral branches. The maximum and minimum percentage of parthenocarpic fruits related to the progeny of commercial cultivar 'Negeen' with B12 and A10 and the progeny of commercial cultivar 'Negeen' with B10 respectively. Maximum and minimum percentage of female flower related to the progeny of commercial cultivar 'Negeen' with B10 and B12 respectively. According to these result it is possible to release recombinant inbred lines similar to elite lines with parthenocarpic in future.

Keywords

Main Subjects


  1. Acciarri, N., Restaino, F., Vitelli, G., Perrone, D., Zottini, M., Pandolfini, T., Spena, A. & Rotino, G. (2002). Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnology, 2(4), 1-7.
  2. Biriukova, N. & Maslovskaya, E. (2004). The influence of cultivation conditions on parthenocarpy of cucumber. In: Proceedings of Cucurbitaceae, the 8th EUCARPIA, 12-17 July, Palacký University, Olomouc, Czech Republic, pp. 51-56.
  3. Boonkorkaew, P., Hikosaka, S. & Sugiyama, N. (2008). Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Scientia Horticulturae, 116 (1), 1-7.
  4. Byers, R. E., Baker, L. R., Sell, H. M., Herner, R. C. & Dilley D. R. (1972). Female flower induction on androecious cucumber (Cucumis sativus L.). Journal of the American Society of horticultural Science, 98, 197-199.
  5. Cantliffe, D. J. & Phatak, S. C. (1975). Parthenocarpic fruit development from grafted ovaries of Cucumis sativus L. Plant Physiology, 55(6), 1107-1109.
  6. Cantliffe, D. J. (1981). Alteration of sex expression due to change in temperature, light intensity, and photoperiod. Journal of the American Society for Horticultural Science, 106 (2), 133-136.
  7. De ponti, O. M. B. & Garretsen, F. (1976). Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica, 25(1), 633-642.
  8. Dudley, J. W. & Moll, R. H. (1968). Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Science, 9(3), 257-262.
  9. Farshadfar, E. (2000). Application of Quantitative Genetics in Plant Breeding. Vol. 1. Tagh- E – Bostan Press, Kermanshah. (in Farsi)
  10. Fazio, G., Staub, J. E. & Stevens, M. R. (2003). Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theoretical Applied Genetics, 107(5), 864-874.
  11. Fukushima, E., Matsuo, E. & Fujieda, K. (1968). Studies on the growth behaviour of cucumber (Cucumis sativus L.), Journal of the Faculty of Agriculture, 14(3), 349-366.
  12. Galun, E. (1959). Effects of gibberellic acid and naphthalene acetic acid on sex expression and some morphological characters in the cucumber plant. Phyton, 13, 1-8.
  13. Galun, E., Izhar, S. & Atsmon, D. (1965). Determination of relative auxin content in hermaphrodite and andromonoecious Cucumis sativus L. Plant Physiology, 40(2), 321-326.
  14. Gustafson, F. G. (1939). The cause of natural parthenocarpy. American Journal of Botany, 26 (3), 135-138.
  15. Hawthorn, L. R. & Wellington, R. (1930) Geneva, a greenhouse cucumber that develops fruit without pollination. New York State Agricultural Experiment Station, 2, 3–11.
  16. Kikuchi, K., Honda, I., Matsuo, S., Fukuda, M. & Saito, T. (2008). Stability of fruit set of newly selected parthenocarpic eggplant lines. Scientia Horticulturae, 115, 111-116.
  17. Kim, I. S. Okubo, H. & Fujieda, K. (1992). Genetic and hormonal control of parthenocarpy in cucumber (Cucumis sativus L.). Journal Faculty of Agriculture, 36 (3.4), 173-181.
  18. Knapp, S. J. (1998). Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Science, 38(5), 1164-1174. 
  19. Kvasnikov, B. V., Rogova, N. T., Tarakanova, S. I. & Ignatov, S. I. (1970). Methods of breeding vegetable crops under the covered ground. Bulletin of applied botany, genetics and plant breeding, 42, 45-57.
  20. Lietzow, C. D., Zhu, H., Pandey, S., Havey, M. J. & Weng, Y. (2016). QTL mapping of parthenocarpic fruit set in North America processing cucumber. Theoretical Applied Genetics, 129 (12), 2387-2401.
  21. Mibus, H. & Tatlioglu, T. (2004). Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical Applied Genetics, 109(8), 1669-1676.
  22. Mitchell, W. D. & Wittwer, S. H. (1962). Chemical regulation of flower sex expression and vegetative growth in Cucumis sativus L. Science, 136(3519), 880-881.
  23. Moradipour, F., Olfati, J. A., Hamidoghli, Y., Sabouri, A. & Zahedi, B. (2016). General and specific  combining ability and heterosis for yield in cucumber fresh market lines. International Journal of Vegetable Science, 23(1), 1-9.
  24. Nematzadeh, Gh. A. & Kiani, Gh. (2011). Plant breeding (Classical methods). Vol. 1. Rice and Citrus Institute. (in Farsi)
  25. Nitsch, J. P. (1970). Hormonal factors in growth and development. In. A.C. Hulme (ed.), The Biochemistry of Fruits and their Products. Vol. II, Academic Press, London, pp. 427-472. 
  26. Olfati, J. A., Babalar, M., Kashi, A. K., Dadashipoor, A. & Shahmoradi, Kh. (2008). The effect of ammonium and molybdenum on nitrate concentration in two cultivars of greenhouse cucumbers. Journal of Horticultural science, 22(1), 67-77.
  27. Panti, K., Das Munshi, A. & Kanti Behera T. (2015). Inheritance of gynoecism in cucumber (Cucumis sativus L.) using genotype gbs-1 as gynoecious parent. Genetika, 47 (1), 349-356.
  28. Pike, L. M. & Peterson, C. E. (1968). Inheritance of Pathenocarpy in the Cucumber (Cucumis sativus L.). Euphytica, 18(1), 101-105.
  29. Rudich, J. Baker, L. R. & Sell, H. M. (1977). Parthenocarpy in Cucumis sativus L. as affected by genetic parthenocarpy, thermo-photoperiod, and femaleness. Journal of the American Society of Horticultural Science, 102(2), 225-228.
  30. Rudich, J., Halevy, A. H. & Kedar, N. (1972). The level of phytohormones in monoecious and gynoecious cucumbers as affected by photoperiod and ethephon. Plant Physiology, 50(5), 585-590.
  31. Serquen, F. C., Bacher, J. & Staub, J. E. (1997). Genetic analysis of yield components in cucumber at low plant density. Journal of American Society of Horticultural Science, 122(4), 522-528.
  32. Sharma, J. R. (2008). Statistical and biometrical techniques in plant breeding. New age international publisher. New dehli. 432 pp.
  33. Spena, A. & Leonardo Rotina, G. (2001). Parthenocarpy. In: Current Trends in the Embryology of Aniosperms. (pp. 435-450.) Kluwer Academic Publishers.
  34. Staub, J. E., Bacher, J. & Crubaugh L. (1995). Problems associated with the selection of determinate cucumber (Cucumis sativus L.) plant types in a multiple lateral background. Cucurbit Genetics Cooperative, 18, 7-9.
  35. Sun, Z., Staub, J. E., Chung, S. M. & Lower, R. L. (2006a). Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breeding, 125 (3), 281-287.
  36. Sun, Z., Lower, R. L. & Staub, J. E. (2006b). Analysis of generation and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant breeding, 125(3), 281-287.
  37. Takeno, K. & Ise, H. (1992). Parthenocarpic fruit set and endogenous indole-3-acetic acid content in ovary f Cucumis sativus L., Journal of the Japanese Society for Horticultural Science, 60(4), 941-946.
  38. Varoquaux, F. Blanvillain, R. Delseny, M. & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends Biotechnology, 18 (6), 233-242.
  39. Wehner, T. C. (1989). Breeding for improved yield in cucumber. Vol. 6. Timber Press.
  40. Wu, Z., Zhang, T., Li, L., Xu, J., Qin, X., Zhang, T., Cui, L., Lou, Q., Li J. & Chen, J. F. (2016). Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biology, 16(182), 1-14.
  41. Yan, L. Y., Lou, L. N., Feng, Z. H., Lou, Q. F. & Chen, J. F. (2010). Inheritance of parthenocarpy in monoecious cucumber (Cucumis sativus L.) under different eco-environments. Chinese Journal of Applied Ecology, 21(1), 61-66.
  42. Yan, L.Y., Lou, L. N., Lou, Q. F. & Chen, J. F. (2008). Inheritance of parthenocarpy in gynoecious cucumber. Acta Horticulturae Sinica, 35 (10), 1441-1446.
  43. Yoshida, T., Matsunaga, S. & Saito T. (2001). Effect of seasonal condition and genotype on fully developed parthenocarpy in eggplant. Journal of the Japanese Society for Horticultural Science, 70, 388. (in Japanese)
  44. Young, L. W., Wilen, R. W. & Bonham-Smith, P. C. (2004) High temperature stress of Brassica napus during flowering reduces micro- and mega-gametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55(396), 485-495.