Effect of foliar application of potassium iodate on strawberry tolerance to salinity stress

Document Type : Full Paper

Authors

1 Associate Professor, Department of Biology, Payame Noor University (PNU), 19395–3697 Tehran, Iran

2 Former M. Sc. Student, Department of Biology, Payame Noor University (PNU), 19395–3697 Tehran, Iran

Abstract

In this study, to evaluate the effect of foliar-applied iodate (5 and 50 mg/l KIO3) on the improvement of tolerance to salt stress (50 mM NaCl) in strawberry plants (Fragaria × ananassa Duch.), an experiment was under taken in complete randomized block design (RBD). The photosynthetic apparatus of strawberry was damaged at 50 mM NaCl, as indicated by a decrease in performance index (PIabs) coupled with lower values of photosynthetic electron transport chain components including the electron transport flux (φEo) and the inferred oxygen evolving complex activity (Fv/Fo) as well as higher levels of malondialdehyde (MDA). Plants treated with a low concentration of KIO3 (5 mg/l) showed an increase in the leaf dry weight, total protein and soluble sugars content with respect to no KIO3 supply under salinity stress. Additionally, low concentration of KIO3 raised free radical scavenging activities of strawberry leaf because of an enhancement of total phenolic content as well as CAT activity. In contrast, plants supplemented by 50 mg/l KIO3 exhibited an extreme stress for the photosynthetic parameters ofstrawberry, as demonstrated by the changes in the Fv/Fo as well as higher levels of MDA was similar to that observed in salt treatments. While KIO3 at 5 mg/l could increase photosystem performance index under salt-stress conditions in addition to the stimulation of antioxidant system, KIO3 at 50 mg/l could not ameliorate the negative effect of salt on strawberry and led to toxicity and caused damage to photochemical reactions, which is mainly overlooked by other authors.

Keywords

Main Subjects


  1. Blasco, B., Leyva, R., Romero, L. & Ruiz, J. M. (2013). Iodine effects on phenolic metabolism in lettuce plants under salt stress. Journal of Agricultural and Food Chemistry, 61(11), 2591-2596.
  2. Blasco, B., Ríos, J. J., Leyva, R., Cervilla, L. M., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Rosales, M. A., Ruiz, J. M. & Romero, L. (2011). Does iodine biofortification affect oxidative metabolism in lettuce plants? Biological Trace Element Research, 142(3), 831-842.
  3. Boominathan, R. & Doran, P.M. (2002). Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist, 156, 202-205.
  4. Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  5. Cao, S., Yang, Z. & Zheng, Y. (2013). Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry, 136(1), 139-143.
  6. Ehlert, B. & Hincha, D. K. (2008). Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods,4(1), 1-12.
  7. Eleiwa, M. E., Bafeel, S. O. & Ibrahim, S. A. (2011). Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions. I. Growth parameters and photosyntheticpigments. Australian Journal of Basic and Applied Sciences, 5, 58-651.
  8. Giannopolitis, C. N. & Ries, S. K. (1977). Superoxide dismutase: Occurrence in higher plants. Plant Physiology, 59, 309-314.
  9. Gupta, N., Bajpai, M., Majumdar, R. & Mishra, P. (2015). Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Advances in Biological Research, 1, 40-48.
  10. Habibi, G. (2014). Role of trace elements in alleviating environmental stress. In: Emerging Technologies and Management of Crop Stress Tolerance. (pp. 313-342.) Springer Science.
  11. Habibi, G. (2017), Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium supply under salt stress. Acta Physiologiae Plantarum, 39(10), 213.
  12. Habibi, G. & Hajiboland, R. (2012). Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum (Crassulaceae) under water stress. Photosynthetica, 50 (4), 508-518.
  13. Hasanuzzaman, M. & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143, 1758-1776.
  14. Hasanuzzaman, M., Nahar, K. & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and Responses of Plants under Salt Stress. (pp. 25-87.). Springer New York.
  15. Hazrati, S., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S. A. M., Mokhtassi-Bidgoli, A. & Nicola, S. (2016). Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry, 106: 141-148.
  16. Iqbal, N., Masood, A. & Khan, N. A. (2012). Phytohormones in salinity tolerance: Ethylene and gibberellins cross talk. In: Phytohormones and Abiotic StressTolerance in Plants. Berlin, Germany, Springer.
  17. Johnson, C. M., Stout, P. R., Broyer, T. C. & Carlton, A. B. (1957). Comparative chlorine requirements of different plant species. Plant Soil, 8, 337-353.
  18. Kato, S., Wachi, T., Yoshihira, K., Nakagawa, T., Ishikawa, A., Takagi, D., Tezuka, A., Yoshida, H., Yoshida, S., Sekimoto, H. & Takahashi, M. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Frontiers in Plant Science, 4, 227.
  19. Kim, H. J., Fonseca, J. M., Choi, J. H., Kubota, C. & Kwon, D. Y. (2008). Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). Journal of Agricultural and Food Chemistry, 56(10), 3772-3776.
  20. Lee, O.H., Lee, B.Y., Lee, J., Lee, H.B., Son, J.Y., Park, C.S., Shetty, K. & Kim, Y.C. (2009). Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresource Technology, 100(23), 6107-6113.
  21. Leyva, R., Sánchez-Rodríguez, E., Ríos, J. J., Rubio-Wilhelmi, M. M., Romero, L., Ruiz, J. M. & Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 181(2), 195-202.
  22. Li, R., Liu, H. P., Hong, C. L., Dai, Z. X., Liu, J. W., Zhou, J., Hu, C. Q. & Weng, H. X. (2017). Iodide and iodate effects on the growth and fruit quality of strawberry. Journal of the Science of Food and Agriculture, 97(1), 230-235.
  23. Mavi, A., Terzi, Z. & Ozgen, U. (2004). Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. Verum (Rubiaceae), Urtica dioica (Urticaceae). Biological and Pharmaceutical Bulletin, 27, 702-705.
  24. Medrano-Macías, J., Leija-Martínez, P., González-Morales, S., Juárez-Maldonado, A. & Benavides-Mendoza, A. (2016). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science, 7, p.1146.
  25. Munns, R., James, R. A. & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043.
  26. Munns, R. &Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  27. Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F. & Berruyer, R. (2013). High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 9, 17.
  28. Schachtman, D. P. & Hare, R. A. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil, 247, 93-105.
  29. Sheteawi, S. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. International Journal of Agriculture and Biology, 9, 473-478.
  30. Simon, L. M., Fatrai, Z., Jonas, D. E. & Matkovics, B. (1974). Study of peroxide metabolism enzymes during the development of Phaseolus vulgaris. Biochemie und Physiologie der Pflanzen, 166(5-6), 387-392.
  31. Smoleń, S., Sady, W., Ledwożyw-Smoleń, I., Strzetelski, P., Liszka-Skoczylas, M. & Rożek, S. (2014). Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chemistry, 159, 316-322.
  32. Smoleń, S., Wierzbińska, J., Sady, W., Kołton, A., Wiszniewska, A. & Liszka-Skoczylas, M. (2015). Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Scientia Horticulturae, 188, 89-96.
  33. Strasser, B. J. & Strasser, R. J. (1995). Measuring fast fluorescence transients to address environmental questions: The JIP-test. In: Photosynthesis: From Light to Biosphere. (pp. 977-980.) Kluwer Academic Publishers, the Netherlands.
  34. Strasser, R.J., Tsimilli-Michael, M. & Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In: Chlorophyll a Fluorescence: A Signature of Photosynthesis. (pp. 321-362.) Springer, Dordrecht.
  35. Sun, Y., Niu, G., Wallace, R., Masabni, J. & Gu, M. (2015). Relative salt tolerance of seven strawberry cultivars. Horticulturae, 1(1), 27-43.
  36. Van Heerden, P. D. R., Swanepoel, J. W. & Krüger, G. H. J. (2007). Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany 61(2), 124-136.
  37. Xu, H. G., Liu, G. J., Liu, G. T., Yan, B. F., Duan, W. & Wang, L. J. (2014). Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biology, 14, 156.
  38. Živčák, M., Brestič, M., Olšovská, K. & Slamka, P. (2008). Performance index as a sensitive indicator of water stress in Triticum aestivum L.. Plant Soil Environ, 54(4), 133-139.
  39. Zucker, M. (1965). Induction of phenylalanine deaminase by light, its relation to chlorogenic acid synthesis in potato tuber tissue. Physiologia Plantarum, 40, 779-784.