Evaluation of qualitative traits of peel and flesh of some peach cultivars and genotypes

Document Type : Full Paper

Authors

1 Former Ph.D. Student, Faculty of Agriculture, University of Tabriz, Iran

2 Professor, Faculty of Agriculture, University of Tabriz, Iran

3 Assistant Professor, Agriculture Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO) Karaj, Iran

4 Associate Professor, Faculty of Agriculture, University of Tabriz, Iran

Abstract

Recognition and evaluation of qualitative traits of peach fruit is an important step in breeding programs and preservation of germplasm. For this purpose, the qualitative and biochemical properties of 18 peach cultivars and genotypes in East Azarbayjan province were investigated in a randomized complete block design with three replications. Some pomological traits like firmness, TSS, pH, TA, vitamin C, total phenolic content, antioxidant capacity, total flavonoid and total anthocyanin of peel and flesh were evaluated. In order to determine the relationship between traits, a Pearson correlation between traits was calculated. Results showed that the effect of cultivar and genotype on the traits was significant at P

Keywords

Main Subjects


  1. Abidi, W., Jiménez, S., Moreno, M. A. & Gogorcena, Y. (2011). Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. International Journal of Molecular Sciences, 12(10), 6919-6935.
  2. Andreotti, C., Ravaglia, D., Ragaini, A. & Costa, G. (2008). Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Annals of Applied Biology, 153(1), 11-23.
  3. Bao, J., Cai, Y., Sun, M., Wang, G. & Corke, H. (2005). Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry, 53(6), 2327-2332.
  4. Brand-Williams, W., Cuvelier, M. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  5. Bureau, S., Renard, C. M., Reich, M., Ginies, C. & Audergon, J. M. (2009). Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Science and Technology, 42(1), 372-377.
  6. Cantin, C. M., Moreno, M. Á. & Gogorcena, Y. (2009). Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Journal of Agricultural and Food Chemistry, 57(11), 4586-4592.
  7. Cantin, C. M., Gogorcena, Y. & Moreno, M. Á. (2010). Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica, 171(2), 211-226.
  8. Cevallos-Casals, B. A., Byrne, D., Okie, W. R. & Cisneros-Zevallos, L. (2006). Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry, 96(2), 273-280.
  9. Chang, C.-C., Yang, M.-H., Wen, H.-M. & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3), 211-221.
  10. Dabbou, S., Lussiana, C., Maatallah, S., Gasco, L., Hajlaoui, H. & Flamini, G. (2016). Changes in biochemical compounds in flesh and peel from Prunus persica fruits grown in Tunisia during two maturation stages. Plant Physiology and Biochemistry, 100, 1-11.
  11. Davarynejad, G., Khorshidi, S., Nyéki, J., Szabó, Z. & Gal-Remennyik, J. (2010). Antioxidant capacity, chemical composition and physical properties of some apricot (Prunus armeniaca L.) cultivars. Horticulture Environment and Biotechnology, 51(6), 477-482.
  12. Di Vaio, C., Marallo, N., Graziani, G., Ritieni, A. & Di Matteo, A. (2014). Evaluation of fruit quality, bioactive compounds and total antioxidant activity of flat peach cultivars. Journal of the Science of Food and Agriculture. 95(10), 2124-2131.
  13. Drogoudi, P., Pantelidis, G. E., Goulas, V., Manganaris, G. A., Ziogas, V. & Manganaris, A. (2016). The appraisal of qualitative parameters and antioxidant contents during postharvest peach fruit ripening underlines the genotype significance. Postharvest Biology and Technology, 115, 142-150.
  14. FAOSTAT. (2017). Food and Agriculture Organization. Value of Agricultural Production in FAO from http://FAOSTAT.fao.org/.
  15. Font i Forcada, C., Gradziel, T., Gogorcena, Y. & Moreno, M. (2014). Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica, 197(2), 261-277.
  16. Gil, M. I., Tomas-Barberan, F. A., Hess-Pierce, B. & Kader, A. A. (2002). Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50(17), 4976-4982.
  17. Giusti, M. M. & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UVā€visible spectroscopy. Current Protocols in Food Analytical Chemistry, 2, 21-37.
  18. Guo, C., Yang, J., Wei, J., Li, Y., Xu, J. & Jiang, Y. (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12), 1719-1726.
  19. Hajilou, J. & Fakhimrezaei, S. (2011). Evaluation of fruit physicochemical properties in some peach cultivars. Research in Plant Biology, 1(5), 16-21.
  20. Hassanpour, H., Yousef, H., Jafar, H. & Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129(3), 459-463.
  21. Iglesias, I. & Echeverría, G. (2009). Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Scientia Horticulturae, 120(1), 41-50.
  22. Jimenez, S., Garin, A., Albas, E., Betran, J., Gogorcena, Y. & Moreno, M. (2004). Effect of several rootstocks on fruit quality of'Sunburst'sweet cherry. Paper presented at the I International Symposium on Rootstocks for Deciduous Fruit Tree Species 658.
  23. Kwon, J., Jun, J., Nam, E., Chung, K., Hong, S., Yoon, I., Yun, S. & Kwack, Y. (2015). Profiling diversity and comparison of Eastern and Western cultivars of Prunus persica based on phenotypic traits. Euphytica, 206(2), 401-415.
  24. Li, W., Li, O., Zhang, A., Li, L., Hao, J., Jin, J. & Yin, S. (2014). Genotypic diversity of phenolic compounds and antioxidant capacity of Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) in China. Scientia Horticulturae, 175(0), 208-213.
  25. Loizzo, M. R., Pacetti, D., Lucci, P., Núñez, O., Menichini, F., Frega, N. G. & Tundis, R. (2015). Prunus persica var. platycarpa (Tabacchiera Peach): Bioactive Compounds and Antioxidant Activity of Pulp, Peel and Seed Ethanolic Extracts. Plant Foods for Human Nutrition, 1-7.
  26. Ministry of Agriculture Jihad. Retrieved March 1. (2017). http://amar.maj.ir. (in Farsi)
  27. National weather service. Retrieved January 1. (2018). from http:// www.weatherbase.com.
  28. Rahim, M. A., Busatto, N. & Trainotti, L. (2014). Regulation of anthocyanin biosynthesis in peach fruits. Planta, 240(5), 913-929.
  29. Reig, G., Iglesias, I., Gatius, F. & Alegre, S. (2013). Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. Journal of agricultural and food chemistry, 61(26), 6344-6357.
  30. Remorini, D., Tavarini, S., Degl Innocenti, E., Loreti, F., Massai, R. & Guidi, L. (2008). Effect of rootstocks and harvesting time on the nutritional quality of peel and flesh of peach fruits. Food Chemistry, 110(2), 361-367.
  31. Serrano, M., Guillen, F., Martinez-Romero, D., Castillo, S. & Valero, D. (2005). Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. Journal of agricultural and food chemistry, 53(7), 2741-2745.
  32. Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S. & Marroni, F. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature genetics, 45(5), 487-494.
  33. Vizzotto, M., Cisneros-Zevallos, L., Byrne, D., Ramming, D. & Okie, W. (2006). Total phenolic, carotenoid, and anthocyanin content and antioxidant activity of peach and plum genotypes. Acta Horticulturae, 713, 453-468.
  34. Waterhouse, A. L. (2001). Determination of Total Phenolics Current protocols in food analytical chemistry (pp. 1-8): John Wiley & Sons, Inc.
  35. Zhao, X., Zhang, W., Yin, X., Su, M., Sun, C., Li, X. & Chen, K. (2015). Phenolic Composition and Antioxidant Properties of Different Peach [Prunus persica (L.) Batsch] Cultivars in China. International Journal of Molecular Sciences, 13(3), 5762-5778.
  36. Zhao, Y. (2013). Genetic Diversity Of Anthocyanin In Peach Fruit And The Evaluating Criterion Of Red-flesh Peach. Journal of Plant Genetic Resources, 14(1), 169-174.
  37. Zhou, H., Lin-Wang, K., Wang, H., Gu, C., Dare, A. P. & Espley, R. V. (2015). Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 82(1), 105-121.