Quantitative expression analysis of CBF1 and CBF4 genes under cold stress treatments in grape cultivars “Khalili-Danedar”, “Shahroodi” in comparison with Vitis Riparia

Document Type : Full Paper

Authors

1 Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

2 Post Graduate Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

3 Assistant Professor, Genetic Engineering Research Institute of Iran

4 Assistant Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

With regard to its economic importance of grapevine, study on different aspects of factors that induce hardiness to the unexpected early-season and late-season cold seems to be essential. Some of the transcription factors are essential for synthesis of proteins that are important for cold adaptation. In the present study, differences in the expression patterns of two CBF1 and CBF4 transcription factors were evaluated under cold stress conditions in the “Khalili-Danedar”, “Shahroodi” and “Riparia”. Results showed that expression of CBF1 was increased at early minutes of cold stress and “Riparia” showed higher expression compared with two other genotypes. Also the least expression was recorded for “Shahroodi” after 24 h of cold treatment. Regarding CBF4, increase in the expression was started one hour after cold treatment and similar to the CBF1, the highest expression was recorded for “Riparia”. Results of expression patterns of these two genes in “Riparia” grape showed that expression of CBF4 was about 10 fold of CBF1.

Keywords


  1.  

    1. Agarwal, P.,  Agarwal, K., Reddy, P., Sopory, S. K., 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep., 25, 1263–1274.
    1. Century, K., Reuber, T. L. & Ratcliffe, O. J. (2008). Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiology, 147, 20-29.
    2. Chinnusamy, V., Schumaker, K. & Zhu, J. K. (2004). Molecular genetic perspectives on cross-talk and specifcity in abiotic stress signalling in plants. Journal Experimental Botany, 55, 225–23.
    3. Choi, D. W., Rodriguez, E. M. & Close, T. J. (2002). Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiology, 129, 1781–1787.
    4. Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G. & Miura, S. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, highsalt- and cold-responsive gene expression. Plant Journal, 33, 751–76.
    5. Fennell, A. (2004). Freezing tolerance and injury in grapevines. Journal of Crop Improvement, 10(1-2):201-235.

     

    1. Gao, M. J., Allard, G., Byass, L., Flanagan, A.M. & Singh, J. (2002). Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Molecular Biology, 49, 459– 471.
    2. Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M. & Thomashow, M. F. (1998). Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal, 16, 433–44.
    3. Haake, V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F. & Zhang, J. Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in arabidopsis. Plant Physiology. Volum. 130:639-648.
    4. Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T. & Thomashow, M.F. (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 127, 910–917.
    5. Jiang, F., Wang, F., Wu, Z., Li, Y., Shi, G., Hu, J. & Hou, X. (2011). Components of the Arabidopsis CBF cold-response pathway are conserved in non-heading chinese cabbage. Plant Molecular Biology Reporter, 29, 525–532.
    6. Kayal, E. W. Navarro, M. Marque, G. Keller, G. Marque, C.& Teulieres, C. (2006). Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. Journal of Exprerimental Botany, 10, 2455-2469.
    7. Kayal, E. W., Navarro, M., Marque, G., Keller, G., Marque, C. & Teulieres, C. (2006). Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. Journal of Exprerimental Botany, 10, 2455-2469.
    8. Lata, C. & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal Experimental Botany, 62, 4731–4748.
    9. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S. & Goda, H. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10, 391–406.
    10. Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402-408.
    11. 17.  Mckhann, H. I. Gery, C. Berard, A. Leveque, S. Zuther, E. Hincha, D. Mita, S. D. Brunel, D. & Teole, E. (2008). Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biology, 8, 1-18.
    12. Moody, A. M. (2009). Molecular aspects of vitis CBF gene activation. Msc thesis.Guelph university, Canada.
    13. 19.  Mullins, MG, Bouquet, A, Williams, L. E. (1992). Biology of the grapevine: Cambridge University Press.

     

    1. Navarro, M., Marque, G., Ayax, C., Keller, G., Borges, J. P., Marque, C. & Teulieres, C. (2009). Complementary regulation of four eucalyptus CBF genes under various cold conditions. Journal Experimental Botany, 60, 2713–2724.
    2. Novillo, F., Alonso, J. M., Ecker, J. R. & Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences USA, 101, 3985– 3990.
    3. Puhakainen, T., Li, C., Boije-Malm, M., Kangasjrvi, J., Heino, P. & Palva, E. T. (2004). Short-day potentiation of low temperatureinduced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiology, 136, 4299–4307.
    4. Qin, Q., Liu, J., Zhang, Z., Peng, R., Xiong, A., Yao, Q. & Chen, J. (2007). Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Molecular Breeding 19, 329–340.
    5. Reid, K. E., Olsson, N., Schlosser, J., Peng, F. & Lund, S. T. (2006). An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 6, 27.
    6. Riechmann, J. L. & Meyerowitz, E. M. (1998) The AP2/EREBP family of plant transcription factors. Journal of Biological Chemistry, 379, 633–646.
    7. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290, 998–1009.
    8. Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal Experimental Botany, 58, 221–227.
    9. Siddiqua, M. & Nassuth, A.(2011). Vitis CBF1 and CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell& Environment. 34: 1345-1359.
    10. Skinner, J. S., von Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E. J., Thomashow, M. F., Chen, T. N. N. & Hayes, P. M. (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Molecular Biology, 59, 533–551.
    11. Stockinger, E. J., Gilmour, S. J. & Thomashow, M. F. (1997), Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences USA, 94, 1035–1040.
    12. Thomashow, M. F. (2001). So what’s new in the field of plant cold acclimation? Plant Physiology, 125, 89–93.
    13. Wang, Q. J., Xu, K. Y., Tong, Z. G., Wang, S. H., Gao, Z. H., Zhang, J. Y. (2010). Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tissue and Organ Culture, 101, 211–21.
    14. Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F. & Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67, 589–602.
    15. Welling, A. & Palva, T. (2008) Involvement of CBF transcription factors in winter hardiness in Birch. Plant Physiology, 147, 1199– 1211.
    16. Xiao, H. Tattersall, E. A. R. Siddiqua,M. k. Cramer, G. & Nassuth, A.(2008). CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell and Environment, 31: 1-10.
    17. Xiao, H., Siddiqua, M., Braybrook, S. & Nassuth, A. (2006). Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant, Cell & Environment, 29, 1410–1421.
    18. Yang, W., Liu, X. D., Chi, X. J., Wu, C. A., Li, Y. Z., Song, L. L. (2011). Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 233, 219–229.
    19. Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., Stockinger, E. J. & Thomashow, M. F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant Journal, 39, 905–919.