فیلوژنی مولکولی و واگرایی عملکردی یوریدین دی فسفات گلیکوزیل ترانسفرازهای (UGT) موجود در جنس زعفران و همولوگ‌های آن در سایر گیاهان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

زعفران زراعی با نام علمی Crocus sativus L. یکی از منابع غنی از آپوکاروتنوئیدها شامل کروسین، پیکروکروسین و سافرانال است. آپوکاروتنوئیدها از شکست اکسیداتیو کاروتنوئیدها حاصل می‌گردند. گلیکوزیلاسیون مرحله نهایی و بسیار مهم در فرآیند بیوسنتز کروسین است زیرا به رنگدانه خصوصیت حلالیت در آب می‌بخشد و خواص شیمیایی و زیست فعالی آن مولکول را تغییر می‌دهد. در این مطالعه، توالی پروتئینی UGTهای موجود در زعفران، همراه با همولوگ‌های آنها در سایر گیاهان از دیدگاه‌های مختلف شامل آنالیز فیلوژنی و شناسایی موتیف، آنالیز واگرایی عملکردی و آنالیز ساختاری مورد بررسی قرار گرفت. تمرکز مطالعه روی UGT‌هایی بود که مسئول گلیکوزیلاسیون اولیه و ثانویه در تولید کروسین در گیاهانی که کروسین در آنها یافت شد، هستند. همچنین، رابطه تکاملی خانواده پروتئین UGT در زعفران و گیاهان دیگر شامل واگرایی عملکردی نوع یک و نوع دو مورد بررسی قرار گرفت. آنالیز فیلوژنی نشان داد که UGT‌هایی که گلیکوزیلاسیون اولیه را برعهده دارند با UGT‌هایی که گلیکوزیلاسیون ثانویه را انجام می دهند در دو گروه کاملا جداگانه با بیشترین تفاوت عملکردی قرار گرفتند.. در هر گروه موتیف‌هایی یافت شد که اختصاصی همان گروه بودند و در این موتیف‌های اختصاصی، اسید آمینه‌هایی با ضریب واگرایی عملکردی بالا شناسایی شد که می توان این واحدها را به تفاوت عملکردی این توالی‌ها نسبت داد. این یافته‌ها ممکن است تحقیقات آینده را با هدف مشخص کردن عملکرد این ژن‌ها تسهیل کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular Phylogeny and Functional Divergence of Uridine Diphosphate Glycosyltransferases (UGTs) in Crocus Genus and their Homologues in Other Plants

نویسندگان [English]

  • Maryam Fallah
  • Roohangiz Naderi
  • Seyed Alireza Salami
Department of Horticultural sciences,, Faculty of Agriculture, University of Tehran, Karaj, Iran
چکیده [English]

Crocus sativus L. is considered as one of the richest sources of apocarotenoids, including crocin, picrocrocin, and safranal. The oxidative breakdown of carotenoids generates apocarotenoids. Glycosylation is the final step of crocin biosynthesis which is crucial due to its role in pigment solubility in water and changes the chemical properties and bioactivity of the molecule. In this study, the protein sequence of UGTs in saffron and their homologs in other plants were analyzed from different points of view, including phylogeny analysis and motif identification, functional divergence analysis, and structural analysis. The present study focused on UGTs responsible for primary and secondary glycosylation in crocin production and picrocrocin glycosylation in plants where crocin is found. Also, the evolutionary relationship of the UGT protein family in Crocus and other plants was investigated, including type I and type II functional divergence. Phylogeny analysis showed that UGTs that carry out primary glycosylation and UGTs that carry out secondary glycosylation were placed in two groups with the highest functional distance. Motifs were group-specific and amino acids with a high functional divergence coefficient were identified in those motifs, which can be attributed to the functional difference of these sequences. These findings may facilitate future researches aimed at characterizing the function of these genes.

کلیدواژه‌ها [English]

  • Glycosyltransferases
  • Motif identification
  • Protein phylogeny
  • UGTs

Extended Abstract

Introduction

Glycosyltransferases catalyze the transfer of a sugar residue from nucleotide-sugar donors to various acceptor molecules. These enzymes change the hydrophilicity, chemical properties, and bioactivity of the molecules. The process of glycosylation is critical in the food and pharmaceutical industries. Prediction of functional residues in a protein is crucial because these residues can be attributed to new functions, change the protein properties, define protein families and subfamilies, or identify the occurrence of an innovation. A phylogenetic analysis of a protein family and functional divergence analysis is valuable for identifying conserved and divergent regions that may offer insights into potential functions.

 

 

 

Material and Methods

In the current study, we placed particular emphasis on UGTs (UDP-glucuronosyltransferases), which play a critical role in both primary and secondary glycosylation during crocin biosynthesis. Two distinct datasets were gathered. The first dataset contained UGT protein sequences specifically identified within the Crocus genus. The second dataset comprised homologous UGT protein sequences retrieved from NCBI using the C. sativus UGTs gene sequence as a query in other plant species. On the first data set, phylogeny and motif analysis and on the second data set, phylogeny, motif, functional divergence, and structural similarity analysis were performed. The phylogeny tree was constructed using MrBayes 3.1.2 software. DIVERGE 3.0 software was utilized to identify functional divergence among members of the UGT protein family. Some UGTs found in plants containing crocin were compared for structural analysis. The SWISS-MODEL server was used for structure prediction, the PyMOL software was employed for structure visualization, and the Dali server was utilized to compare the degree of structural similarity among the desired UGT structures.

 

Result and discussion

The study focused on UGT enzymes in the Crocus genus, specifically comparing those responsible for primary and secondary glycosylation in crocin production. According to the phylogeny analysis, UGT proteins were classified into different subfamilies, forming separate branches on the tree. Results revealed four distinct groups within Crocus and six when including sequences from other plants in the phylogenetic tree analysis. In both phylogenetic trees, the primary and secondary glycosylation groups were distinctly separated from the beginning, indicating the difference between these two groups.

Using MEME software, 15 shared motifs were identified among these sequences, which likely play crucial roles in protein specificity and function. Based on the position and presence of motifs in sequences, it has been concluded that sequences grouped together likely share similar functions. On the other hand, sequences grouped in different clusters perform distinct functions, which can be justified by the presence of different motifs within them. When UGTs of Crocus were studied alongside other plants, motifs 10 and 11 were found in the primary glycosylation group, overlapping with motifs 5 and 7 in the primary glycosylation group identified in the first analysis. This overlap may indicate the significance of these motifs and their potential role in the functional specificity of this group.

Based on previous researches, while the C-terminal region of UDP-glucuronosyltransferases (UGTs) often interacts with the sugar donor group, the N-terminal region interacts in substrate recognition of the sugar acceptor group. Additionally, crystal structures of UGTs have shown that the N-terminal region is less protected compared to the C-terminal region, which correlates with the diversity of UGT receptors. In the current study, specific motifs at positions 7 (first analysis) or 11 (second analysis) in primary glycosylation groups, and motif 13 (second analysis) in secondary glycosylation groups located at the N-terminal region. According to previous studies, these motifs may contribute to substrate specificity between primary and secondary glycosylation groups.

In the present study, the functional divergence coefficient of type 1 was significantly greater than zero, indicating a substantial divergence pattern among the subfamilies examined. However, the functional divergence coefficient of type 2 was very low. These results suggest a predominant pattern of functional divergence type 1 for distinguishing between the subfamilies under investigation, and selective pressure specific to certain sites is likely to play a significant role in most UGT genes, leading to the evolution of specific subfamily functions following divergence.

 

Conclusion

Phylogeny analysis showed that UGTs that carry out primary glycosylation and UGTs that carry out secondary glycosylation were placed in two separate groups. These two groups had high functional distance. In each group, motifs were found specific to the same group. In these specific motifs, amino acids with a high functional divergence coefficient were identified, which can be attributed to the functional difference of these sequences.

Abhiman, S., Daub, C. O., & Sonnhammer, E. L. L. (2006). Prediction of function divergence in protein families using the substitution rate variation parameter alpha. Molecular Biology and Evolution, 23(7), 1406–1413. https://doi.org/10.1093/molbev/msl002.
Ahmed, A., Peters, N. R., Fitzgerald, M. K., Watson, J. A., Hoffmann, F. M., & Thorson, J. S. (2006). Colchicine glycorandomization influences cytotoxicity and mechanism of action. Journal of the American Chemical Society, 128(44), 14224–14225. https://doi.org/10.1021/ja064686s.
Ahrazem, O., Diretto, G., Argandoña, J., Rubio-Moraga, Á., Julve, J. M., Orzáez, D., Granell, A., & Gómez-Gómez, L. (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany, 68(16), 4663–4677. https://doi.org/10.1093/jxb/erx277.
Ahrazem, O., Rubio-Moraga, A., Mozos, A. T., & Gómez-Gómez, M. L. (2014). Genomic organization of a UDP-glucosyltransferase gene determines differential accumulation of specific flavonoid glucosides in tepals. Plant Cell, Tissue and Organ Culture (PCTOC), 119, 227–245. https://doi.org/10.1007/s11240-014-0528-y.
Ahrazem, O., Rubio-Moraga, A., Trapero-Mozos, A., Climent, M. F. L., Gómez-Cadenas, A., & Gómez-Gómez, L. (2015). Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Science, 234, 60–73. https://doi.org/10.1016/j.plantsci.2015.02.004.
Arnau, V., Gallach, M., Lucas, J. I., & Marín, I. (2006). UVPAR: fast detection of functional shifts in duplicate genes. BMC Bioinformatics, 7(1), 1–12. https://doi.org/10.1186/1471-2105-7-174.
Bharatham, K., Zhang, Z. H., & Mihalek, I. (2011). Determinants, discriminants, conserved residues-a heuristic approach to detection of functional divergence in protein families. PLoS One, 6(9), e24382. https://doi.org/10.1371/journal.pone.0024382.
Breton, C., Fournel-Gigleux, S., & Palcic, M. M. (2012). Recent structures, evolution and mechanisms of glycosyltransferases. Current Opinion in Structural Biology, 22(5), 540–549. https://doi.org/10.1016/j.sbi.2012.06.007.
Breton, C., & Imberty, A. (1999). Structure/function studies of glycosyltransferases. Current Opinion in Structural Biology, 9(5), 563–571. https://doi.org/10.1016/S0959-440X(99)00006-8.
Caballero-Ortega, H., Pereda-Miranda, R., & Abdullaev, F. I. (2007). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 100(3), 1126–1131. https://doi.org/10.1016/j.foodchem.2005.11.020.
Chagoyen, M., García-Martín, J. A., & Pazos, F. (2016). Practical analysis of specificity-determining residues in protein families. Briefings in Bioinformatics, 17(2), 255–261. https://doi.org/10.1093/bib/bbv045.
Christodoulou, E., Kadoglou, N. P. E., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634–1649. https://doi.org/10.1111/jphp.12456.
del Sol Mesa, A., Pazos, F., & Valencia, A. (2003). Automatic methods for predicting functionally important residues. Journal of Molecular Biology, 326(4), 1289–1302. https://doi.org/10.1016/S0022-2836(02)01451-1.
Demurtas, O. C., Frusciante, S., Ferrante, P., Diretto, G., Azad, N. H., Pietrella, M., Aprea, G., Taddei, A. R., Romano, E., & Mi, J. (2018). Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiology, 177(3), 990–1006. https://doi.org/10.1104/pp.17.01815.
Diretto, G., Ahrazem, O., Rubio‐Moraga, Á., Fiore, A., Sevi, F., Argandoña, J., & Gómez‐Gómez, L. (2019). UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). New Phytologist, 224(2), 725–740. https://doi.org/10.1111/nph.16079.
Gu, X. (2003). Functional divergence in protein (family) sequence evolution. Origin and Evolution of New Gene Functions, 133–141. https://doi.org/10.1007/978-94-010-0229-5_4
Gu, X. (2006). A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Molecular Biology and Evolution, 23(10), 1937–1945. https://doi.org/10.1093/molbev/msl056.
Gu, X., Zou, Y., Su, Z., Huang, W., Zhou, Z., Arendsee, Z., & Zeng, Y. (2013). An update of DIVERGE software for functional divergence analysis of protein family. Molecular Biology and Evolution, 30(7), 1713–1719. https://doi.org/10.1093/molbev/mst069.
Holm, L., Laiho, A., Törönen, P., & Salgado, M. (2023). DALI shines a light on remote homologs: One hundred discoveries. Protein Science, 32(1), e4519. https://doi.org/10.1002/pro.4519.
Illergård, K., Ardell, D. H., & Elofsson, A. (2009). Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins: Structure, Function, and Bioinformatics, 77(3), 499–508. https://doi.org/10.1002/prot.22458.
Lai, C., Yang, N., Yusuyin, M., Zhang, D., Yang, Y., Li, C., & Xu, H. (2022). Characterization of a novel crocetin glycosyltransferase UGTCs4 involved in two steps of glycosylation in crocin biosynthesis from crocus cultured cell.
Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7, 735. https://doi.org/10.3389/fpls.2016.00735.
Li, L., Shakhnovich, E. I., & Mirny, L. A. (2003). Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases. Proceedings of the National Academy of Sciences, 100(8), 4463–4468. https://doi.org/10.1073/pnas.0737647100.
Liang, Z., Yang, M., Xu, X., Xie, Z., Huang, J., Li, X., & Yang, D. (2014). Isolation and purification of geniposide, crocin-1, and geniposidic acid from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. Separation Science and Technology, 49(9), 1427–1433. https://doi.org/10.1080/01496395.2013.879179.
Lim, E., & Bowles, D. J. (2004). A class of plant glycosyltransferases involved in cellular homeostasis. The EMBO Journal, 23(15), 2915–2922. https://doi.org/10.1038/sj.emboj.7600295.
López-Jimenez, A. J., Frusciante, S., Niza, E., Ahrazem, O., Rubio-Moraga, Á., Diretto, G., & Gómez-Gómez, L. (2021). A new glycosyltransferase enzyme from family 91, UGT91P3, is responsible for the final glucosylation step of crocins in saffron (Crocus sativus l.). International Journal of Molecular Sciences, 22(16), 8815. https://doi.org/10.3390/ijms22168815.
Mandai, T., Yoneyama, M., Sakai, S., Muto, N., & Yamamoto, I. (1992). The crystal structure and physicochemical properties of L-ascorbic acid 2-glucoside. Carbohydrate Research, 232(2), 197–205. https://doi.org/10.1016/0008-6215(92)80054-5.
Meng, L., Liu, X., He, C., Xu, B., Li, Y., & Hu, Y. (2020). Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sciences, 15(1), 346–363. https://doi.org/10.1515/biol-2020-0036.
Mirny, L. A., & Gelfand, M. S. (2002). Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. Journal of Molecular Biology, 321(1), 7–20. https://doi.org/10.1016/S0022-2836(02)00587-9.
Modolo, L. V, Blount, J. W., Achnine, L., Naoumkina, M. A., Wang, X., & Dixon, R. A. (2007). A functional genomics approach to (iso) flavonoid glycosylation in the model legume Medicago truncatula. Plant Molecular Biology, 64, 499–518. https://doi.org/10.1007/s11103-007-9167-6.
Moraga, Á. R., Mozos, A. T., Ahrazem, O., & Gómez-Gómez, L. (2009). Cloning and characterization of a glucosyltransferase from Crocus sativusstigmas involved in flavonoid glucosylation. BMC Plant Biology, 9(1), 1–16. https://doi.org/10.1186/1471-2229-9-109.
Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Letters, 586(7), 1055–1061. https://doi.org/10.1016/j.febslet.2012.03.003.
Naylor, G. J. P., & Gerstein, M. (2000). Measuring shifts in function and evolutionary opportunity using variability profiles: a case study of the globins. Journal of Molecular Evolution, 51, 223–233. https://doi.org/10.1007/s002390010084.
Nguyen Ba, A. N., Strome, B., Hua, J. J., Desmond, J., Gagnon-Arsenault, I., Weiss, E. L., Landry, C. R., & Moses, A. M. (2014). Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. PLoS Computational Biology, 10(12), e1003977. https://doi.org/10.1371/journal.pcbi.1003977.
Offen, W., Martinez‐Fleites, C., Yang, M., Kiat‐Lim, E., Davis, B. G., Tarling, C. A., Ford, C. M., Bowles, D. J., & Davies, G. J. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. The EMBO Journal, 25(6), 1396–1405. https://doi.org/10.1016/j.febslet.2012.03.003.
Ohno, S. (2013). Evolution by gene duplication. Springer Science & Business Media.
Pennisi, E. (2021). Protein structure prediction now easier, faster. American Association for the Advancement of Science. doi: 10.1126/science.373.6552.262.
Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and structure elucidation of carotenoid− glycosyl esters in gardenia fruits (gardenia jasminoides ellis) and saffron (crocus sativus linne). Journal of Agricultural and Food Chemistry, 44(9), 2612–2615. https://doi.org/10.1021/jf950713e.
Pu, X., He, C., Yang, Y., Wang, W., Hu, K., Xu, Z., & Song, J. (2020). In vivo production of five crocins in the engineered Escherichia coli. ACS Synthetic Biology, 9(5), 1160–1168. https://doi.org/10.1021/acssynbio.0c00039.
Rahimi, S., Kim, J., Mijakovic, I., Jung, K.-H., Choi, G., Kim, S.-C., & Kim, Y.-J. (2019). Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances, 37(7), 107394. https://doi.org/10.1016/j.biotechadv.2019.04.016.
Swint-Kruse, L. (2016). Using evolution to guide protein engineering: the devil is in the details. Biophysical Journal, 111(1), 10–18. http://dx.doi.org/10.1016/j.bpj.2016.05.030.
Trapero, A., Ahrazem, O., Rubio-Moraga, A., Jimeno, M. L., Gómez, M. D., & Gómez-Gómez, L. (2012). Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Plant Physiology, 159(4), 1335–1354. https://doi.org/10.1104/pp.112.198069.
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., & Laydon, A. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590–596. https://doi.org/10.1038/s41586-021-03828-1.
Umesono, K., & Evans, R. M. (1989). Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell, 57(7), 1139–1146.
Verma, V. V., Gupta, R., & Goel, M. (2015). Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies. Biology Direct, 10(1), 1–21. https://doi.org/10.1186/s13062-015-0080-7.
Vogt, T., & Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science, 5(9), 380–386.
Wang, M., Ji, Q., Lai, B., Liu, Y., & Mei, K. (2023). Structure-function and engineering of plant UDP-glycosyltransferase. Computational and Structural Biotechnology Journal. https://doi.org/10.1016/j.csbj.2023.10.046.
Wang, X. (2009). Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Letters, 583(20), 3303–3309. https://doi.org/10.1016/j.febslet.2009.09.042.
Weymouth-Wilson, A. C. (1997). The role of carbohydrates in biologically active natural products. Natural Product Reports, 14(2), 99–110.
Winterhalter, P., & Rouseff, R. L. (2001). Carotenoid-derived aroma compounds. ACS Publications.
Xi, L., & Qian, Z. (2006). Pharmacological properties of crocetin and crocin (digentiobiosyl ester of crocetin) from saffron. Natural Product Communications, 1(1), 1934578X0600100112. https://doi.org/10.1177/1934578X0600100
Zhang, C., Griffith, B. R., Fu, Q., Albermann, C., Fu, X., Lee, I.-K., Li, L., & Thorson, J. S. (2006). Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science, 313(5791), 1291–1294. doi: 10.1126/science.113002.